Circuit Weight Training vs Jogging in Metabolic Risk Factors of Overweight/Obese Women

Carlos Alexandre Fett¹, Waléria Christiane Rezende Fett¹, Julio Sérgio Marchini²
Laboratório de Aptidão Física e Metabolismo da Faculdade de Educação Física da Universidade Federal de Mato Grosso¹. Cuiabá. MT; Laboratório de Espectrometria de Massa. Departamento de Clínica Médica da Faculdade de Medicina da Universidade de São Paulo². Ribeirão Preto. SP - Brazil

Summary
Background: Resisted and aerobic exercises are recommended to reduce weight and improve health, but which exercise modality offers the best results is still unclear.

Objective: The aims of this study were to compare circuit weight training (CWT) with jogging (JOGG) on multiple cardiovascular disease (CVD), metabolic risk factors and fitness of overweight and obese women (body composition, lipid profile, uric acid, glucose, metabolic equivalent (MET), heart rate, blood pressure, flexibility, resting energy expenditure (REE) and nitrogen balance (NB)).

Methods: Fifty women were randomly divided in two groups, but only 26 finished it: CWT (n=14; 36±12 years old; body mass index, BMI=32±7 kg/m²) and JOGG (n=12; 37±9; BMI=29±2). The first month of training consisted of 60 min x 03 days/week and the second month of training consisted of 04 days/week for both protocols and a dietary reeducation.

Results: Both groups reduced total body mass, fat body mass, BMI, plasma uric acid and increase in MET (p<0.05); there was no change in lean body mass, REE and resting heart rate. CWT reduced total cholesterol, plasma triglycerides, NB and increased flexibility; JOGG reduced waist/hip ratio, glucose, systolic blood pressure, high-density lipoprotein cholesterol, and increased the total cholesterol/high-density lipoprotein cholesterol ratio (p<0.05).

Conclusion: Both protocols improved CVD and metabolic risk factors. The CWT presented favorable changes regarding lipid profile and flexibility; JOGG on glucose, waist/hip ratio and blood pressure. These results suggest that resisted exercise combined with aerobics should be considered for obese people. Nevertheless, regarding some basal differences between the groups, it was not possible to conclude that changes were due to exercise type or intra-group variability.

(Arq Bras Cardiol 2009; 93(5) : 480-486)

Key words: Overweight; obesity; uric acid; physical fitness; energy metabolism.

Introduction

Obese individuals present an impaired lipid profile, increased plasma uric acid, a higher incidence of diabetes type 2, risk factors for cardiovascular disease (CVD) and chronic diseases in general. Moreover, the waist/hip ratio (WHR) and body mass index (BMI; m/kg²), are positively correlated with dyslipidemia and CVD, negatively correlated with endothelial function and with a low physical fitness and effort tolerance, which are associated with an increased risk of death.

Around one third of the American population is currently trying to lose weight, but not all people who would benefit from weight loss are making an attempt at it. Despite an increased investment in weight reduction programs, these efforts have been unable to prevent the increase in overweight and obesity. In addition, 33.5% of the individuals regain the lost weight over a one-year period, and up to 90 to 95% gain it back later. One reason that contributes to this is that diets to reduce weight are associated with a reduction in resting energy expenditure (REE, kcal/day) as well as in lean body mass (LBMI), which is positively associated with REE.

On the other hand, increased physical activity also favors a better weight maintenance, and weight regain is two times higher in those with sedentary life styles. Regular physical activity reduces abdominal fat, the mortality risk, even over the caloric intake and additionally, weight loss is associated with the reduction in metabolic risk factors. However, the increase in domestic physical activity is not associated with a reduction in obesity and other CVD risk factors.

Jogging is a low- to medium-intensity type of aerobic training, habitually used for weight control. CWT involves mixed metabolic characteristics and produces good results regarding body fat reduction, physical fitness and functional capacity improvement, but it is still not clear which of the two types of training is more efficient.

Thus, the main purposes were to determine the influence of each exercise over:
Table 1 - Anthropometry and bioimpedance results for overweight/obese women before (T1) and after (T2) eight weeks of a moderate low-calorie diet and circuit weight training (CWT; n=14) or jogging (JOGG; n=12)

<table>
<thead>
<tr>
<th>Variables</th>
<th>CWT</th>
<th>JOGG</th>
<th>∆</th>
<th>CWT</th>
<th>JOGG</th>
<th>∆</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>89±20</td>
<td>84±18‡</td>
<td>-5±4</td>
<td>75±11*</td>
<td>70±11‡</td>
<td>-5±2</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>32±7</td>
<td>31±7‡</td>
<td>-1±0.4</td>
<td>29±2</td>
<td>26±1‡</td>
<td>-3±0.2</td>
</tr>
<tr>
<td>% Fat mass</td>
<td>44±6</td>
<td>38±7‡</td>
<td>-6±1</td>
<td>40±5</td>
<td>33±5‡</td>
<td>-7±1</td>
</tr>
<tr>
<td>Waist/Hip ratio</td>
<td>0.93±0.10</td>
<td>0.92±0.08</td>
<td>-0.00±0.0</td>
<td>0.88±0.06</td>
<td>0.87±0.07*</td>
<td>0.00±0.2</td>
</tr>
<tr>
<td>Bioimpedance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lean mass (kg)</td>
<td>53±5</td>
<td>52±5</td>
<td>-1±0.5</td>
<td>46±7*</td>
<td>45±7</td>
<td>-1±0.5</td>
</tr>
<tr>
<td>Fat mass (kg)</td>
<td>45±15</td>
<td>41±15†</td>
<td>-4±2</td>
<td>28±6*</td>
<td>24±6†</td>
<td>-4±2</td>
</tr>
<tr>
<td>% Fat mass</td>
<td>45±6</td>
<td>43±6†</td>
<td>-2±0.5</td>
<td>38±2†</td>
<td>34±3†</td>
<td>-3±4</td>
</tr>
</tbody>
</table>

Means±SD; Comparisons in each group were T1xT2; between groups were T1xT2 and ∆=T2-T1; significant effects at *p<0.05; †p<0.01; ‡p<0.001; BMI - body mass index.
nitrogen from total ingested nitrogen (each gram of nitrogen represents 6.25 g of ingested protein from food record). The additional nitrogen loss in the stool was estimated with the addition of 2 g/d[4].

The metabolic equivalent (MET; 3.5 ml O₂.kg⁻¹.min⁻¹), was assessed on an electric treadmill (model E17A®, Del Mar Reynolds Medical, Inc. Irvine: CA, USA) using the Ergo PC13® program of Micromed, the ECG digital Micromed program (Micromed Biotecnologia Ltda, Guara II, Brasilia: DF, Brazil) and the Bruce protocol, provided by the Service of Cardiology of UHFMRPUSP. The flexibility was accessed through the seat and reach test, of which the result was the maximal distance achieved in cm[19].

Training intensity was adjusted according to 70 to 80% of the Karvonen heart rate reserve (HRR) calculated through the following equation:

\[HRR = (HR_{max} - HR_{basal}) \times 0.7 \text{ ou } 0.8 + HR_{basal} \]

and by the modified Borg scale between three and five; moderate to strong[18,19]. Training consisted of 1 h per session (45 min of activity and 15 min divided between warming-up and cooling-down), with three sessions per week during the first month (180 min/week), and 4 sessions during the second month (240 min/week) for both groups.

CWT consisted of 15 stations of resisted exercises for all the main muscle groups with a thirty-second duration (10 to 20 repetitions per exercise) alternated with 30 seconds of walking or jogging. The maximum number of repetitions, which increased with conditioning, was performed to maintain the intensity that each subject was able to reach in the above range. The stations were arranged in a circle in a 10 x 15 m room with tatami pads on the floor. The jogging training took place on an athletic track with the subject performing the exercise continuously for 45 min at the programmed intensity.

Statistical analysis

The Kolmogorov-Smirnov test was used to analyze data for normality of distribution and the paired Student t-test was used for the comparison of the two times (T1 vs. T2) in each group. Comparison between groups at baseline (CWT T1 vs. JOGG T1), and for variations (delta, \(\Delta = T2-T1 \)), was performed by the unpaired Student t-test. Data are reported as mean±SD and the statistical analyses were carried out at the 5% level of significance, with the determination of the 95% confidence interval. The power of test was estimated as \(\gamma (\theta) = 0.915 \) (91.5%), considering the variation of two units of BMI and a number of participants equal 10.

Results

One-hundred-and-twenty women contacted us; of the selected 72, 50 started the program and 26 completed it (CWT, \(n = 14 \); JOGG, \(n = 12 \)). The age of the volunteers was 36±12 years old for the CWT and 37±9 for the JOGG groups. The other characteristics are presented in Table 1. The reasons for the 24 dropout cases were: little adherence to protocols (\(n = 10 \); 06 in CWT and 04 in JOGG group), difficulties with the training schedule due to work or family reasons (\(n = 6 \); 03 in CWT and 03 in JOGG group), family disease (\(n = 1 \); in JOGG group), a fall (\(n = 1 \); in JOGG group), and depression and/or anxiety (\(n = 6 \); 02 in CWT and 04 in JOGG group).

Total body mass, BMI, body fat percentage from anthropometry, body fat percentage by BIA and body fat were
significantly reduced in both groups; WHR was significantly reduced in JOGG and lean mass showed no statistically significant difference in either group as well as no delta differences (Table 1).

Uric acid was significantly reduced in both groups; CWT also presented a significantly reduction in TC and Tg and JOGG presented a decrease in glucose and HDL levels and an increase in the TC/HDL ratio. LDL and TC/HDL deltas where significantly reduced in the CWT compared to JOGG group (Table 2).

The REE decreased slightly in both groups, but there was no statistical difference (CWT: T1 = 1600±240 (kcal/d), T2 = 1450±270; JOGG: T1 = 1510±160, T2 = 1400±160). The NB decreased significantly in the CWT, remained the same in the JOGG and was positive in both groups (Figure 1). Diet evaluation regarding macronutrients was: T1 = 31% fat, 16% protein and 53% carbohydrate; T2 = 24% fat, 19% protein and 57% carbohydrate for both groups.

Both groups significantly increased the MET and total time of treadmill maximal test. The CWT increased flexibility and JOGG reduced systolic blood pressure (p<0.05), but no changes in RHR were observed in either group. The flexibility delta was significantly higher in the CWT group (Table 3).

Discussion

In spite of some baseline differences between the groups, the initial mean BMI, which was the criterion for inclusion in the study, was considered to be statistically equal. This was due to the fact that two groups cannot be accurately paired in random experiments. However, we would like to point out that our objective was to perform a global analysis of the study, was considered to be statistically equal. This was due to the fact that two groups cannot be accurately paired in random experiments. However, we would like to point out that our objective was to perform a global analysis of the groups. To minimize the initial variation of some variables, we also analyzed the changes occurring between deltas of each group.

The present study observed improvement in body composition, biochemical parameters, physical conditioning, and maintenance of REE, LBM and NB in both groups, similar to what was observed in others studies of the same nature, in which CWT or JOGG training was used. Longer studies (12 weeks) with a slightly less caloric diet or with the same duration and very low-calorie intake had similar results regarding body composition and biochemical parameters. However, regarding CWT, other studies observed that this type of training resulted in marked improvement in physical conditioning and a modest improvement in body composition. Compared to these studies, the present study observed better improvement in body composition in the CWT group. When comparing CWT and JOGG, Gettman et al., similarly to the present study, did not find differences in body composition or VO₂ max between these two types of exercise. These results show that the issue is not unanimous in literature.

Another important aspect for obese people is the association of diet reeducation with physical activity. It has been demonstrated that a moderate reduction in total calorie intake, as proposed in the present study, causes better subject compliance than programs involving a very low calorie diet. The patients were advised to choose whole carbohydrates with higher fiber content and lean protein. In the present study, the diet had an increased carbohydrate and protein content and a reduced fat content. This qualitative approach should have had a positive impact on body fat reduction.

The CWT or JOOG protocols were according to the recommendations of the American College of Sports Medicine (ACSM) for obese individuals. However, Beckham and Earnest showed that a training stimulus significantly below (< 32% VO₂ max) ACSM recommendations (50% VO₂ max) in a CWT protocol, significantly increased the VO₂ max result, but that HR should not be used to assess exercise intensity in these exercise modalities. To solve this problem, we also used the Borg Scale in combination with HRR, which show good association. In spite of some difference in variables between the groups, both showed improvement in MET and total time of treadmill maximal test, suggesting equivalence in terms of training intensity and health improvement. The VO₂ max alone has a predictive value of all causes of mortality equivalent to that of diabetes, hypertension, high levels of cholesterol and smoking. MET is equivalent to VO₂ max and is used to estimate the intensity level of the physical activity. Although the HR reduction is expected with the cardiovascular improvement, this was not observed here. Although this is

Table 3 - Fitness marker results for overweight and obese women before (T1) and after (T2) eight weeks of a moderate low-calorie diet and circuit weight training (CWT; n=14) or jogging (JOGG; n=12)

<table>
<thead>
<tr>
<th>Variables</th>
<th>CWT</th>
<th>JOGG</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET</td>
<td>9.5±2.5</td>
<td>10.7±2.6*</td>
<td>1.2±0.9</td>
</tr>
<tr>
<td>Time</td>
<td>9.6±3.0</td>
<td>10.9±3.0*</td>
<td>1.3±1.0</td>
</tr>
<tr>
<td>RHR</td>
<td>81±7</td>
<td>79±8</td>
<td>-2±5</td>
</tr>
<tr>
<td>SBP</td>
<td>126±14</td>
<td>121±13</td>
<td>-5±15</td>
</tr>
<tr>
<td>DBP</td>
<td>81±5</td>
<td>80±7</td>
<td>-0.9±11</td>
</tr>
<tr>
<td>Flexibility (cm)</td>
<td>12.8±8.5</td>
<td>20.2±12.6*</td>
<td>8.0±8.1</td>
</tr>
</tbody>
</table>

Means±SD; Comparison in each group were T1xT2; between groups were T1xT1 and Δ = T2-T1; significant effects at *p<0.05; †p<0.01; ‡p<0.001; MET - metabolic equivalent (3.5 ml O₂·kg⁻¹·min⁻¹); Time - minutes of maximal treadmill test; RHR - resting heart rate (pulses/min); SBP - systolic blood pressure (mmHg); DBP - diastolic blood pressure (mmHg).
difficult to explain, these findings are in agreement with other long-term studies.

The flexibility was improved only in the CWT group. We speculate that the full range of motion of resisted exercise applied in present study may have contributed to this fact, as both groups followed the same stretching protocol in the start and the end of sessions. The flexibility is an important factor to facilitate activities of daily living and that is reduced with age and impaired in obese people. The poor flexibility and fitness level was associated with an increase in body fat percentage and back pain in nurses22. Regarding this physical valence, the CWT group showed better result for general fitness conditioning and daily activities.

The WHR was significantly reduced in the JOGG, but not in CWT group. It was expected that weight reduction would proportionally reduce the general measurements, maintaining the WHR value19. However, in a study performed by Wabitsch et al.34, young women with abdominal obesity had a greater reduction in WHR, weight, TC and uric acid than women with gluteus obesity. This may have been due to the fact that the levels of the variables analyzed were higher in women with abdominal obesity, favoring a greater loss. In another study, women with abdominal obesity were found to oxidize more fat during physical activity than women with gluteus obesity, favoring a reduction in WHR19. Therefore, differences in fat distribution between the groups may explain the results of these studies34,35. However, in the present study, the CWT group had a greater mean WHR value than the JOGG group, a fact that does not support this reasoning.

Girandola36, showed that when a high-intensity protocol and a low-intensity protocol with other exercises were applied, only the low-intensity protocol improved body composition. In this regard, the present data support a different conclusion, because the duration and intensity of the two protocols were similar, but the metabolic energy involved was different, with the JOGG predominantly utilizing aerobic and CWT group using mixed aerobic/anaerobic energy resources. One explanation is that exercises for lean body mass development27, such as in the CWT, and increase dietary protein intake18, as the one utilized in the present dietary protocol, would favor REE and consequently fat oxidation, justifying the CWT results. But, in the present study, REE was maintained in both groups and the NB remained positive during the intervention time, facts that could have contributed to body fat reduction in both groups. Probably, by different metabolic pathways, both groups efficiently increased fat oxidation and maintained REE, despite the differences between the groups regarding body composition.

Harber et al.27 demonstrated that the CWT promotes an increase in the cross-sectional area of type IIA fibers and tends to increase lean mass in sedentary men in only 10 weeks. The lean mass is correlated with REE2 and, in a previous study8, we observed that in obese women, when expressed as kg units, the lean mass presents the best correlation with REE, when compared to total weight, fat mass and BMI. These facts should contribute to the action of CWT in reducing fat and improving lipid profile. However, the JOGG protocol was sufficiently intense to maintain the lean body mass, contributing to the absence of REE decrease, a common fact observed in weight-loss protocols1. Furthermore, the training associated with dieting in both groups was sufficient to promote the positive nitrogen balance, which suggests enough energy and protein to support the protein synthesis, contributing to REE maintenance18.

The changes observed in the lipid profile in the present study may have been influenced by the type of exercise and to a difference between groups in T1. The total cholesterol was significantly higher, and the difference in levels of triglycerides did not have statistical difference, but they were biologically higher in CWT, which could have contributed to higher reduction in this group. However, studies demonstrated that a weight reduction in 10% is associated with an improvement in metabolic risk factors5,11, as observed here. Yet, one study with type-2 diabetes subjects reported that CWT promoted a significant reduction in total cholesterol, LDL and triglycerides37. In the present study, the reductions were just 6% in the CWT and 7% in JOGG group, when compared to the initial weight. It was demonstrated that the exercises are more often associated with CVD risk prevention than caloric intake5,10. Furthermore, the type of exercise could differently impact risk factors to CVD, but this was not observed in this study, may be regarding to differences between groups in basal, but which was not conclusive in the present study due to the differences in biochemical variables in T1.

On the other hand, differently from the present study, Nieman et al.40, observed that reductions in TC and Tg were effectively associated with weight loss in obese women, but not with the exercise. However, Lee et al.39, reported that physical activity was more important than the reduction in abdominal obesity regarding the risk of metabolic alterations. In addition, physical activity reduces intra-abdominal fat even without weight reduction14, and the increase in the number of days of domestic physical activity do not appear to be associated with the prevention of the majority of CVD risk factors in men and women12, supporting the idea that continuity and intensity of physical activity are determinants for that prevention, even more than the diet reeducation10. In this regard, both protocols reduced variables associated with CVD risk factors.

Basal glucose, diastolic blood pressure and uric acid were all reduced in the JOGG group and just uric acid in the CWT group. The weight reduction and physical activity are associated with this behavior2,3,46. These results suggest that the continuous, more than intermittent activity, had the strongest impact over blood pressure and glucose, but the importance of these factors are reduced here because these were normal values at the start of the study in both groups. Although hypertension is associated with obesity, as in the present study, others observed normal blood pressure in lean, overweight and obese eumenorrheic middle-aged women3.

Conclusion

In summary, a combination of dietary calorie and fat reduction with regular physical exercise improved the general aspects of health and reduced metabolic risk factors in these obese women. The CWT group presented better results regarding lipid profile and flexibility and the JOGG group regarding glucose and diastolic blood pressure. However, these differences could not
be attributed to the type of exercise alone, but also to the intra-group effect too, as the high number of dropouts limited the final numbers of participants and the groups had an important difference between the BMI and biochemistry variables in T1. However, even without a marked weight reduction, the changes promoted by the protocols improved the CVD and metabolic risk factors1, suggesting that they are a good approach for obese patients that do not meet these criteria with the accumulation of domestic physical activity1,2, and many of those trying to lose weight do not use effective strategies2.

These results suggest that a combination of resisted and aerobic physical exercises is well tolerated and could present better results than aerobics alone for obese individuals, but that does not solve the problem of the low adherence to behavioral reeducation programs. Future investigations with a larger number of participants and the same dependent variables at the start of the study should help elucidate the conflicting results. Increased efforts are needed among all those trying to lose weight to promote effective strategies for weight loss, including the use of calorie reduction and increased levels of physical activity3.

Acknowledgements

References