Blood Pressure in Young Individuals as a Cardiovascular Risk Marker.
The Rio de Janeiro study

Erika Maria Gonçalves Campana, Andréa Araújo Brandão, Roberto Pozzan, Maria de Fátima França, Flavia Lopes Fonseca, Oswaldo L Pizzi, Maria Eliane Campos Magalhães, Elizabete Viana de Freitas, Ayrton Pires Brandão
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ – Brazil

Abstract
Background: The study of the cardiovascular risk variables in young populations is fundamental to establish primary prevention strategies.

Objective: To evaluate the blood pressure (BP), anthropometric and metabolic profile in young individuals from The Rio de Janeiro Study, followed by 17 years.

Methods: A total of 115 individuals (64 males) were evaluated at three different moments (follow-up: 212.23±16.0 months): A1 (12.97±1.48 years), A2 (21.90±1.71 years) and A3 (30.65±2.00 years) and divided in two groups: NG (n=84) with at least two normal BP measurements at the three assessments; HG (n=31) with at least two abnormal BP measurements at the three assessments. BP and body mass index (BMI) were obtained at the three assessments. Levels of glucose, triglycerides, total cholesterol and fractions were obtained at A2 and A3. Abdominal circumference (AC) was obtained only at A3.

Results: 1) The means of BP, BMI and AC (p<0.0001) as well as the prevalence of systemic arterial hypertension (SAH) and overweight/obesity (O/O) (p<0.003) were higher in the HG at the three assessments; 2) The means of LDL-c and glycemia (p<0.05) at A2 and the prevalence of metabolic syndrome (MS) at A3 were higher in the HG; 3) the association SAH+O/O was more prevalent in the HG, whereas the association NBP+NBMI was more prevalent in the NG (p<0.0001) at the three assessments; 4) SAH at A1 (RR=5.20 = 5.20; p<0.0007), male gender (RR=5.26 = 5.26; p<0.0019) and OO at A1 (RR=3.40 = 3.40; p<0.0278) determined an increased risk for AH at the young adult life (A3).

Conclusion: After 17 years of follow-up, the BP of young individuals showed a significant association with the cardiovascular risk variables and the occurrence of MS at the young adult life. (Arq Bras Cardiol 2009; 93(6):608-615)

Key Words: Blood pressure; risk factors; child; adolescent; Brazil; Rio de Janeiro.

Introduction
The cardiovascular disease (CVD) is the main cause of death in the world and it is accountable for around 300,000 deaths/year in Brazil1-4. These figures justify the search for a more profound knowledge of the disease and its risk factors (RF), so that the primary prevention can be increased in our country5-7.

It is acknowledged that the RF are involved in the CVD in adult individuals; however, the information on their implications in young individuals is still limited5-7. However, it is known that atherosclerosis starts at an early age and slowly progresses until the onset of its complications5,9. The Bogalusa Study showed that atherosclerotic lesions were present in the aorta and coronaries of young individuals and that these lesions were related to the presence of RF5-7.

It is of fundamental importance to understand the behavior of risk factors throughout the years, as they tend to repeat and worsen – “The Trail or Tracking Phenomenon”5-7,10-16 – and determine progressive alterations in the cardiovascular system5-7,8,9, 10-16.

In Brazil, the results of the Rio de Janeiro Study (RJ) have demonstrated that high blood pressure (BP) levels in childhood and adolescence are associated with higher BP levels, anthropometric values and a higher prevalence of metabolic syndrome (MS) at the young adult phase12-16.

All these findings undeniably demonstrate an association between RF and atherosclerotic disease at the early phases of life17. However, the pathway that leads to the transition from increased cardiovascular risk in childhood to CVD in adulthood has yet to be fully established18.

The present study aims at evaluating BP, the anthropometric profile and the metabolic variables in young individuals, stratified by the BP behavior obtained at three different moments, throughout 17 years of follow-up, since childhood and adolescence.
Methods

The study population is originated from the Rio de Janeiro Study12-16, a line of research on blood pressure (BP) and other cardiovascular RF in young individuals and their families, which has been developed at the Universidade do Estado do Rio de Janeiro since 1983. The present study was carried out in two phases: in the first, around 3,000 children between 6 and 9 years were evaluated (1983-1986) at two phases: school and home, to determine the curves of normality for BP by sex and age range. From 1987 on, the second phase of the ERJ was started and children and adolescents aged 10 to 15 years, who have been followed throughout five phases of assessment: school (1987-1988), home (1989-1991), hospital (1992-1995), family (1996-1999) and ambulatory (2004-2008) were evaluated. The present study is part of this last phase (Figure 1). A total of 3,900 children were assessed in A1 to determine the normality curves of BP by sex and age range. In A2, two groups of individuals were studied, stratified by the BP obtained in A1: the group with increased BP, defined by a BP level ≥95p, and the group with normal BP, defined as BP level ≤50p. These two groups comprehended a sample of 385 target-students that were studied and followed at the subsequent phases of the ERJ. Therefore, the 115 students that participated in A3 are representative of the 385 participants in A2; however, they are not representative of the 3,900 young individuals evaluated at the school phase of the second phase of the ERJ, due to the design of the previously described study.

We evaluated 115 individuals (64 males), designated as target-students, of both sexes, during a follow-up of 212.23±16.0 months. For the present study, three evaluations of the second phase of the ERJ were considered, as follows: A1 (School phase): at 12.97±1.48 years (10-16 yrs), A2 (Family phase): at 21.90±1.71 years (18-26 yrs) and A3 (Ambulatory phase): at 30.65±2.00 years (27-36 yrs).

Two groups were formed according to the behavior of the BP, as follows: group N (at least two normal BP measurements at the three assessments), with 84 individuals (42 males) and group H (at least two abnormal BP measurements at the three assessments) with 31 individuals (22 males) (Figure 2).

The study was approved by the Ethics Committee in Research of HUPE. All individuals signed the Free and Informed Consent Form.

A questionnaire was applied at the three assessments to analyze the clinical, epidemiological and sociocultural variables and BP, weight (W) and height (H) were obtained and the body mass index (BMI) was calculated. At A2 and A3, blood glucose, total cholesterol, HDL-c and triglycerides were measured after a 12-hour fasting and LDL-c was calculated. Also at A2, insulin levels were measured and the HOMA-IR was calculated. At A3, the measurement of the abdominal circumference (AC) was added.

The BP was measured in the right upper limb, with the individual lying down, using a mercury column sphygmomanometer, with appropriate cuffs for the individuals’ arms19. Three BP measurements were carried out, with a
Population: n = 115

School (A1) 1987 – 1988 (12.97±1.48 yrs)
Family (A2) 1996 – 1999 (21.90±1.71 yrs)
Ambulatory (A3) 2004 – 2008 (30.65±2.00 yrs)

212.23±16.05 months

Figure 2 - Sample stratification by BP behavior at the three different moments of evaluation. RJS - Rio de Janeiro Study; Group N - Normal; Group H - Abnormal

The data obtained were stored in a single database using the Microsoft Access program. The data were analyzed using the statistical program SPSS for Windows, version 8.0.0, Copyright SPSS Inc., 1989 - 1997.

The following statistical tests were used:

- Student’s t test (t): used for the comparison of two sets of data when the following conditions are considered: the mean and standard deviation are good estimates of the central tendency and of the dispersion of these sets; the samples have normal distribution; the populations from where the data were obtained have similar variances and the number of observations is the same for both sets.

- Chi-square Test (χ^2): used for the comparison of the frequency distributions of the categorical variables of independent samples.

- The logistic non-linear regression model is used when the response variable is qualitative with two possible results (dichotomous).

Results

The general characteristics of the 115 target-students and of the two groups created based on the BP behavior throughout the 17 years of follow-up (NG = Normal and HG = Hypertensive) are shown in Table 1.

Systolic and diastolic arterial pressure

Table 2 shows the means of the systolic (SAP) and diastolic arterial pressure (DAP) in the total population and in the groups at the three moments of assessment, A1, A2 and A3. When comparing the BP behavior between the groups N (NG) and H (HG), it can be observed that the SAP and DAP means were higher in the HG than in the NG, with statistically significant differences at the three assessments.

When analyzing the positive variation of the BP at the end of 9 years (A1→ A2), no statistically significant differences were observed regarding the variation of the SAP, as well as of the DAP, between the NG and the HG. At the end of 17 years (A1→ A3), a higher positive variation of DAP was observed in the HG (p=0.024); the same was not observed for SAP.

The prevalence of SAH was 39.10%, 23.50% and 30.40%, at A1, A2 and A3 respectively. The HG presented a higher prevalence of SAH at the three assessments, when compared to the NG (p < 0.0001).

Anthropometric variables

The anthropometric variables can be found in Table 3. Higher means of weight and BMI were observed in HG, with...
Table 2 - Means of blood pressure and its variation in the total population and in the groups N and H at the three moments of evaluation

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Total population</th>
<th>NG</th>
<th>HG</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAP (mmHg)</td>
<td>A1</td>
<td>113.53±14.49</td>
<td>108.79±11.60</td>
<td>126.39±13.87</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>124.30±14.87</td>
<td>119.70±12.89</td>
<td>136.77±12.67</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>120.00±16.69</td>
<td>115.63±13.09</td>
<td>138.84±13.16</td>
</tr>
<tr>
<td>DAP (mmHg)</td>
<td>A1</td>
<td>62.08±13.56</td>
<td>58.20±11.95</td>
<td>72.58±12.16</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>78.61±11.22</td>
<td>75.49±9.31</td>
<td>87.06±11.74</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>80.64±13.49</td>
<td>75.51±10.03</td>
<td>94.19±12.09</td>
</tr>
<tr>
<td>V+SAP (mmHg)</td>
<td>A1→A2</td>
<td>10.77±15.57</td>
<td>10.92±14.79</td>
<td>10.39±17.76</td>
</tr>
<tr>
<td></td>
<td>A1→A3</td>
<td>8.30±15.63</td>
<td>6.73±13.96</td>
<td>12.45±18.99</td>
</tr>
<tr>
<td>V+DAP (mmHg)</td>
<td>A1→A2</td>
<td>16.53±15.26</td>
<td>17.29±14.45</td>
<td>14.48±17.34</td>
</tr>
<tr>
<td></td>
<td>A1→A3</td>
<td>18.40±14.12</td>
<td>17.18±14.08</td>
<td>21.61±13.94</td>
</tr>
</tbody>
</table>

NG – normal group; HG – hypertensive group; SAP – systolic arterial pressure; DAP – diastolic arterial pressure; V+SAP – positive variation of the systolic arterial pressure; V+DAP – positive variation of the diastolic arterial pressure.
(A1, A2 and A3), a combination of these two conditions was observed in four different models: [normal BP+ normal BMI]; [normal BP+ elevated BMI]; [elevated BP + normal BMI] and [elevated BP + elevated BMI]. It was observed that the most unfavorable association model [elevated BP+ elevated BMI] presented a higher prevalence at the HG at the three assessments. Inversely, for the normal association model [normal BP+ normal BMI], a higher prevalence was observed in the NG at the three assessments. The prevalence of the four association models at A1, A2 and A3 are shown in Figure 3.

Logistic regression analysis
A model of logistic regression analysis was built for the analysis of the relative risk (RR), where the dependent variable used was the SAH at A3 and the independent variables analyzed were the presence or absence of SAH at A1, the gender and the presence or absence of O/O at A1. It was observed that the presence of SAH at A1 (RR: 5.20; p < 0.0007), the male gender (RR: 5.26; p < 0.0019) and the presence of de O/O at A1 (RR: 3.40; p < 0.0278) determined an increased risk for the occurrence of SAH at A3.

Table 3 - Means of the anthropometric variables in the total population and in the groups N and H at the three evaluations

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Total population</th>
<th>NG</th>
<th>HG</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>49.76±11.93</td>
<td>47.11±10.54</td>
<td>56.92±12.68</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>A2</td>
<td>68.45±14.19</td>
<td>64.63±12.18</td>
<td>78.82±14.26</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>A3</td>
<td>75.49±18.70</td>
<td>70.99±15.37</td>
<td>90.13±19.30</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

Height (m)	A1	1.56±0.10	1.55±0.10	1.60±0.11	= 0.016
	A2	1.69±0.46	1.68±0.09	1.72±0.10	= 0.044
	A3	1.68±0.72	1.69±0.97	1.72±0.38	= 0.103

BMI(Kg/m²)	A1	20.15±3.27	19.47±2.83	22.00±3.69	< 0.0001
	A2	23.67±3.68	22.64±3.02	26.44±3.92	< 0.0001
	A3	26.09±5.45	24.49±4.24	30.44±6.02	< 0.0001

| AC (cm) | A3 | 90.46±13.48 | 86.74±10.84 | 100.41±14.91 | < 0.0001 |

NG - normal group; HG – hypertensive group; t – Student’s t Test; BMI – body mass index; AC - abdominal circumference.

Table 4 - Means of the metabolic variables in the total population and in the groups N and H at A2 and A3

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Total Population</th>
<th>NG</th>
<th>HG</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC (mg/dl)</td>
<td>A2</td>
<td>177.37±33.41</td>
<td>174.80±34.34</td>
<td>183.68±30.61</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>185.42±36.99</td>
<td>183.04±36.31</td>
<td>191.58±38.59</td>
</tr>
<tr>
<td>HDL-c (mg/dl)</td>
<td>A2</td>
<td>47.06±12.86</td>
<td>45.50±13.44</td>
<td>43.55±10.71</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>49.82±14.12</td>
<td>50.66±14.01</td>
<td>47.87±14.42</td>
</tr>
<tr>
<td>LDL-c (mg/dl)</td>
<td>A2</td>
<td>112.68±27.71</td>
<td>109.26±28.19</td>
<td>121.06±25.00</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>115.01±31.54</td>
<td>112.05±31.42</td>
<td>121.73±31.29</td>
</tr>
<tr>
<td>TGL (mg/dl)</td>
<td>A2</td>
<td>88.12±41.00</td>
<td>85.18±39.99</td>
<td>95.32±43.20</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>106.85±59.15</td>
<td>102.01±60.39</td>
<td>118.39±55.33</td>
</tr>
<tr>
<td>G (mg/dl)</td>
<td>A2</td>
<td>92.90±8.32</td>
<td>91.83±8.13</td>
<td>95.51±8.33</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>82.66±12.58</td>
<td>81.20±13.18</td>
<td>86.32±10.22</td>
</tr>
<tr>
<td>Insulin (µUI/ml)</td>
<td>A2</td>
<td>13.10±10.19</td>
<td>12.92±10.42</td>
<td>17.19±8.92</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>3.27±2.47</td>
<td>2.99±2.53</td>
<td>4.06±2.13</td>
</tr>
</tbody>
</table>

NG - normal group; HG – hypertensive group; χ² - Chi-square; TC - total cholesterol; HDL-c - HDL-cholesterol; LDL-c - LDL-cholesterol; TGL - triglycerides; G – glycemia; HOMA-IR - homeostasis model of assessment of insulin resistance.
Discussion

It is of fundamental importance to study the behavior of the cardiovascular RF since childhood and adolescence until the adult age, in order to adopt primary prevention measures. The BP behavior has been analyzed in several populations of young individuals and there is increasing evidence that the BP in childhood is correlated with the BP in the adult life and that SAH in children is an important RF for the future development of CAD.

In the present study, the repetition of normal and abnormal BP values from childhood and adolescence allowed us to separate the participants in two groups of young individuals that presented the variables that comprehend the cardiovascular RF with different behaviors, reinforcing the importance of observing these variables from the earlier age ranges.

It is known that the BP tends to increase from birth, throughout childhood and adolescence. In this analysis of the ERJ cohort, a similar behavior was observed, with a progressive BP increase with age, verified through the positive variation of the SAP and DAP during the 17 years of follow-up in both the NG and HG.

The BP values observed in childhood tend to remain in the same percentile range with time, which means that the

| Table 5 - Prevalence of low HDL-c, increased insulinemia, glucose intolerance and metabolic syndrome in the total population and in the groups N and H at A2 and A3 |
|---|----------------|----------------|----------------|
| | Total Population | NG | HG | P |
| Low HDL-c at A2 | 52.30% | 57.14% | 64.50% | 0.107 |
| Low HDL-c at A3 | 45.20% | 39.30% | 61.30% | 0.035 |
| Increased insulin at A2* | 18.26% | 13.10% | 32.26% | 0.008 |
| Glucose Intolerance at A2 (HOMA-IR)** | 18.26% | 13.10% | 32.26% | 0.039 |
| Glucose Intolerance at A3*** | 7.00% | 4.80% | 12.90% | 0.128 |
| MS at A3 | 28.70% | 17.90% | 58.1% | 0.0001 |

NG - normal group; HG – hypertensive group; χ² - Chi-square; HDL-c - HDL-cholesterol (mg/dl); MS – metabolic syndrome; * insulin levels >95th percentile; **HOMA-IR > 95th percentile; *** fasting glycemia > 100 and < 126mg/dl at A3.

Figure 3 - Prevalence of the four models of association between BP and BMI in the total population and in the NG and HG at A1, A2 and A3. NBP+N BMI – normal blood pressure + normal body mass index; NBP+O/O – normal blood pressure + overweight/obesity; SAH+N BMI – systemic arterial hypertension + normal body mass index; SAH+O/O - systemic arterial hypertension + overweight/obesity.
children with higher BP percentiles tend to remain in the higher percentiles until the adult age12,16,30-32. The BP means and the SAH prevalence were always higher in the HG than in the NG at the three assessments, suggesting that children and adolescents present a pattern of BP behavior throughout time. It is worth mentioning that the original design of the Rio de Janeiro Study (ERJ) was characterized by the follow-up of young individuals with distinct BP behaviors at the school phase: with a BP percentile ≥95 or with a BP percentile ≤50. Therefore, in the subsequent phases of the study, higher SAH prevalence rates are expected than those observed in the general population within this age range.

The body composition is one of the main BP determinants in children. There is a direct association between weight and BP, especially in the second decade of life33-35. In our country, several ERJ cohort publications had already shown the importance of the body composition in BP determinism in children and adolescents12-16. In the present study, higher weight, height and BMI means were observed in HG at the three assessments, showing that this population also presented an association between body composition and BP.

Similarly to what has been reported in the literature12-16,33-35, a progressive increase in the prevalence of increased BMI was observed throughout the 17 years of follow-up (A1 = 25.2% → A2 = 30.4% → A3 = 53.9%). Reinforcing the knowledge of the association between O/O and SAH in this age range, it was observed that, from childhood to the present moment, the target-students that belonged to the HG presented higher prevalence of O/O.

A relevant aspect is to know the pattern of body fat distribution and its association with the RF in young populations14-35. In the study sample, the association between central obesity and BP was evident, with the individuals from the HG presenting a higher mean AC at A3. Additionally, it is important to study the association of SAH and O/O, due to its unfavorable potential11,16-38. The results of the present study are in agreement with those in the literature12-16,33-35 demonstrating a progressive increase in the prevalence of the association [SAH + O/O] throughout the 17 years of follow-up (A1 = 15.7% → A3 = 27%). If the condition of at least one of the present factors (SAH or O/O) is considered, it can be observed that this unfavorable risk profile also became more prevalent throughout the follow-up, being present in almost 60% (57.5%) of the target-students in the current phase (A3).

In the present study, the individuals from the HG presented a more unfavorable metabolic profile than those in the NG, with higher TC, LDL-c and TGL means and lower HDL-c means. Among the individuals from the HG, the prevalence of low HDL-c levels was almost two-fold higher than among those from the NG, which reinforces the unfavorable CV risk profile in this group of young individuals.

The aggregation of RF in adults is very common in clinical practice. In the last years, this same association has been documented in the young population12-16,22,24,37. The metabolic syndrome (MS), an important representation of the RF aggregation, is a condition associated with high cardiovascular morbidity and mortality and with the elevated socioeconomic cost12,14-16,22,37.

In the studied population, a more unfavorable metabolic profile was observed among the target-students from the HG. As observed in the literature39,40, the low HDL-c was a highly prevalent alteration (61.3%) in this population. Other elements that are part of the context of the MS and reflect the alteration in glucose tolerance and insulin resistance (HOMA-IR, abnormal fasting glycemia and high serum insulin levels) were also more prevalent in individuals from the HG, in agreement with the literature12,16,39,40. The prevalence of MS presented a similar distribution, being more prevalent among the target-students from the HG.

It is also important to consider the impact of some modifiable and non-modifiable RF on the increased risk of CVD development. Among the non-modifiable RF, age and gender are acknowledged to be important in CVD determinism. The male gender is associated with a higher cardiovascular risk8,17,19,26-27. At the logistic regression analysis, the main factors related to the occurrence of SAH at the adult age were: male gender (5.26; 95%CI: 1.8438 – 15.0353; p = 0.0019), presence of SAH (5.20; 95%CI: 1.9986 – 13.5061; p = 0.007) and the presence of O/O (3.40; 95%CI 1.1430 – 10.1046; p = 0.0278) in childhood and adolescence (A1), emphasizing that, in addition to the male gender, the presence of SAH and O/O at A1 are important for the cardiovascular risk profile at the young adult phase.

The main limitation of the present study is the same experiences by several other cohorts in the literature and is related to the longitudinal character of the follow-up that determines progressive losses of part of the original sample. However, it is worth mentioning that the population sample of the Rio de Janeiro Study is a non-hospitalized sample and has been followed for the last 17 years, constituting the Brazilian cohort within this age range with the longest follow-up to date.

In conclusion, the maintenance of elevated BP levels from childhood to the young adult life correlated with a more unfavorable profile of cardiovascular risk represented by higher prevalence of arterial hypertension, overweight/obesity, lipid and glycemic alterations as well as the presence of metabolic syndrome in the young adult phase. The findings suggest that the primary prevention measures for cardiovascular risk factors must be initiated in childhood and adolescence.

Potential Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Sources of Funding

This study was partially funded by Faperj.

Study Association

This article is part of the thesis of master submitted by Erika Maria Gonçalves Campana, from Universidade do Estado do Rio de Janeiro.
References

17. Steinberger J, Daniels S. Obesity, insulin resistance, diabetes, and cardiovascular risk in children – An American Heart Association scientific statement from the atherosclerosis, hypertension, and obesity in the young committee (Council on Cardiovascular Disease in the Young) and the diabetes committee (Council on Nutrition, Physical Activity, and Metabolism) Circulation. 2003; 107 (10): 1448-53.

