Antiadrenergic Rescue Therapy with Amiodarone in Children with Severe Left Ventricular Dysfunction Secondary to Scorpion Envenomation

Justo J. Santiago1,2,3, Carmen A. Mazzei de Dávila2,3, Diego F. Davila1,2,3, Jose H. Donis1,2,3, Vanesa Villaroel9
Instituto de Investigaciones Cardiovasculares de la Universidad de los Andes1; Hospital Universitario de los Andes2; Universidad de los Andes3, Mérida - Venezuela

Abstract
Background: Children with scorpion envenomation have massive sympathetic activation and variable degrees of left ventricular systolic dysfunction.

Objective: To evaluate a rescue protocol for children with severe left ventricular dysfunction secondary to scorpion envenomation.

Methods: Four children, after scorpion envenomation, were subjected to a rescue protocol for acute left ventricular dysfunction: Endotracheal intubation and respiratory assistance, electrocardiograms, chest x-Ray, echocardiograms and blood samples for norepinephrine and troponin I serum levels. Samples and echocardiograms were repeated at 12, 24 and 48 hours. Intravenous medications: Dobutamine: 4-6 mcg/kg/min. Amiodarone: 3 mg/kg during a 2 hour period. Maintenance: 5 mg/kg/day. Furosemide: 0.5 mg/kg/dose. Diuretics were given when the systemic blood pressure was above percentile fifty. Amiodarone, Dobutamine and Furosemide were administered during the first 48 hours. Beta-adrenergic blockers and angiotensin converting enzyme were given, at 48 hours after admission, once the left ventricular Ejection fraction > 0.35 and the clinical status had improved.

Results: On admission, norepinephrine was 77.50 ± 794.96 pg/ml, troponin I 4.5 ± 4.09 ng/ml and left ventricular ejection fraction 0.0 ± 0.056. At twelve hours, norepinephrine and troponin I serum levels were down to half of the initial values and the ejection fraction increased to 0.32 ± 0.059. During the next 24 and 48 hours, the ejection fraction rose to 0.46 ± 0.045, (p<0.01) and norepinephrine and troponin diminished to 56.75 ± 7.7 (p < 0.0) and 0.6 (p<0.0) respectively.

Conclusion: Amiodarone, by acting as a neuromodulator, is very likely responsible for the early and progressive decrease of serum norepinephrine. (Arq Bras Cardiol 2010; 94(1): 18-23)

Key Words: Scorpion venoms; norepinephrine; amiodarone; adrenergic beta-agonists.

Introduction
In Mérida-Venezuela, we have identified distinct geographical areas in which scorpion envenomation is potentially lethal1,2. Our initial findings indicated that the clinical manifestations were predominantly cardiovascular (i.e. pulmonary edema and cardiogenic shock). In a second clinical investigation, we performed two-dimensional echocardiograms and measured norepinephrine serum levels, to simultaneously assess cardiac function and sympathetic activation3. Our results demonstrated that, in children with scorpion envenomation, pulmonary edema and cardiogenic shock were accompanied by massive sympathetic activation and variable degrees of reversible left ventricular systolic dysfunction.

The mechanisms by which scorpion envenomation causes myocardial damage and systolic dysfunction are still the subject of intense controversy4-9. Sympathetic nervous system activation9,10 and direct effects of the venom on the myocardium11,12 are thought to be responsible for myocardial damage and systolic dysfunction. Histopathological findings in fatal human scorpion envenomation have shown unequivocal evidence of coagulative myocytolysis5,7,13. These lesions, known as myocardial contraction bands, are considered the hallmark of catecholamine cardiotoxicity14. Moreover, cardiac troponin, a biological marker of myocardial necrosis, increases from admission to 24-36 hours after the sting15-16.

Children with pulmonary edema and cardiogenic shock secondary to scorpion envenomation are usually in critical conditions and hemodynamically unstable4,17. Medical management is aimed at providing cardiorespiratory assistance to improve tissue perfusion and oxygenation4. Ideally, cardioprotection from catecholamine cardiotoxicity should be based on beta-adrenergic antagonists19,20. However, the presence of acutely depressed left ventricular systolic function precludes the administration of these
extremely useful drugs. Therefore, we have used the sympatholytic actions of intravenous and oral amiodarone as a rescue therapy for children with severe left ventricular dysfunction secondary to scorpion envenomation.

Methods

Children referred to the Pediatric Emergency of the Hospital Universitario de Los Andes, between November 2003 and November 2004, with clinical diagnosis of scorpion envenomation and who were in pulmonary edema or cardiogenic shock were managed according to the following rescue protocol for severe left ventricular systolic dysfunction. On admission and after informed consent was obtained from the child’s parent, all patients were assessed by the same physicians and found to be hemodynamically unstable. Endotracheal intubation and respiratory support were instituted when necessary. They all were subjected to the following noninvasive tests: electrocardiograms, chest x-Ray, two-dimensional echocardiograms and blood tests. The latter included special samples for norepinephrine determination by high-pressure liquid chromatography and troponin I by enzyme immunoassay (Immulite Automated Analyser, USA). Normal values for troponin I with this method are <1 ng/ml. Blood samples and two-dimensional echocardiograms were repeated at 12, 24 and 48 hours after admission and analyzed in a blind manner. The investigator responsible for this part of the protocol had no knowledge of the clinical status of the patient. This protocol was approved by the Human Research Committee of the Instituto de Investigaciones Cardiovasculares de la Universidad de Los Andes.

Based on the clinical and echocardiographic findings of shock and severely depressed left ventricular systolic function (Table 1: Ejection fraction 0.20 ± 0.056), the following rescue protocol was performed:

1. Intravenous Dobutamine: 4-6 mcg/kg/min.
2. Intravenous Amiodarone: 3 mg/kg, to be administered in a 2 hour period. Maintenance: 5 mg/kg/day.
3. Furosemide: 0.5 mg/kg/dose.
4. Digitalis: 10 mcg/kg/day

Diuretics were given when systemic blood pressure was above the 50th percentile. Amiodarone, dobutamine and furosemide were administered during the first 48 hours. Beta-adrenergic blockers (carvedilol: 0.04 mg/kg/dose, at a 12-hour interval) and angiotensin converting enzyme (captopril: 0.01 mg/kg/dose at an 8-hour interval) were given up to 48 hours after admission, since left ventricular function (ejection fraction > 0.35) and clinical status had improved. Simultaneously, dobutamine, amiodarone and furosemide were progressively down titrated and discontinued.

Results

Four children with scorpion envenomation were referred to the emergency department of the Hospital Universitario de Los Andes in Mérida, Venezuela. They came from rural areas of southwestern Venezuela and had received antivenin at the site of the accident (Antiscorpion serum, Centro de Biotecnología, Universidad Central, Caracas, Venezuela).

Clinical, epidemiologic, electrocardiographic and echocardiographic characteristics

As can be seen in table 1, two patients were male and two female. Ages ranged from 3 to 14 years. The time interval between the accident and antivenin administration was 7.0 ± 4.54 hours. Heart and respiratory rates were markedly increased, and systemic blood pressure was below the third percentile. The electrocardiogram was abnormal in all four patients (Figure 1), and the ejection fraction was severely depressed (0.20 ± 0.056).

Echocardiographic, neurohormonal and biochemical changes during the administration of the rescue protocol for left ventricular systolic dysfunction

On admission, serum norepinephrine (1727.50 ± 794.96 ng/ml) and troponin I (24.53 ± 14.09) were markedly elevated and left ventricular ejection fraction was severely depressed (0.20 ± 0.056) (Table 2, Figure 1A). Twelve hours after initiation of the rescue protocol, mean norepinephrine (p < 0.02) and troponin I serum levels were down to half of baseline values and the ejection fraction had increased from 0.20 ± 0.056 to 0.32 ± 0.059. During the next 48 hours, the ejection fraction returned to values close to normal (0.46 ± 0.045, p < 0.01) and biochemical markers of sympathetic activation (p < 0.02) and myocardial necrosis (p < 0.002) were also significantly diminished (Table 2).

Figure 2 illustrates the dramatic improvement in septal wall motion and left ventricular function. Norepinephrine (r = - 0.76, p < 0.004) and troponin I (r = - 0.60, p < 0.01) serum levels correlated inversely and significantly with ejection fraction. On the contrary, norepinephrine and troponin I decreased significantly when the ejection fraction increased from 0.20 to 0.32. The peak of norepinephrine and troponin I serum levels were observed 24 hours after admission and the ejection fraction was markedly depressed (0.20 ± 0.056) (Table 2, Figure 1A).

Table 1 - Baseline clinical, epidemiological, electrocardiographic, and echocardiographic characteristics

<table>
<thead>
<tr>
<th>Age</th>
<th>7.50±5.06 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex: Male</td>
<td>2</td>
</tr>
<tr>
<td>Sex: Female</td>
<td>2</td>
</tr>
<tr>
<td>Time from accident to antivenin administration</td>
<td>7.0 ± 4.54 hours</td>
</tr>
<tr>
<td>Heart rate</td>
<td>154.50 ± 27.52 beats/min</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>60 ± 10.14 breaths/min</td>
</tr>
<tr>
<td>Systemic blood pressure</td>
<td>< 3rd Percentile</td>
</tr>
<tr>
<td>LV Ejection fraction</td>
<td>0.20 ± 0.056</td>
</tr>
<tr>
<td>Electrocardiogram</td>
<td>ST depression in precordial leads</td>
</tr>
</tbody>
</table>

Values are M ± SD * Left Ventricular.
correlated directly and significantly with one another ($r = 0.60, p<0.01$) (Figure 3).

Discussion

Acutely depressed left ventricular function has been consistently demonstrated by two-dimensional echocardiograms and hemodynamic measurements in children with scorpion envenomation17,4. Although histopathological and biochemical studies have documented the presence of catecholamine cardiotoxicity4,14,6 and myocardial necrosis5,7, current clinical management of the cardiovascular manifestations of scorpion envenomation is mainly based on mechanical ventilation and positive inotropic support17,18. Moreover, clinical and experimental studies clearly indicated that beta-adrenergic agonists drugs might enhance the deleterious effects of massive sympathetic activation on the myocardium27,28.

Children with acute left ventricular systolic dysfunction secondary to scorpion envenomation clearly need the positive inotropic support provided by endogenous catecholamines and exogenous beta-adrenergic agonists18. In an attempt to modulate the massive sympathetic activation caused by scorpion envenomation and minimize the need for positive inotropic support with beta-adrenergic agonists, we have followed an antiadrenergic rescue protocol for acutely depressed left ventricular systolic function. This rescue protocol is based on the favorable effects of intravenous amiodarone on critically ill children23. Intravenous administration of amiodarone has acute sympatholytic and vagotonic actions29. Furthermore, amiodarone selectively decreases sympathetic efferent traffic to the heart and improves left ventricular function$^{30-33}$.

Upon admission, our patients with acutely depressed left ventricular function had biochemical evidence of massive sympathetic activation and of myocardial necrosis. Norepinephrine and troponin I serum levels were markedly elevated. Serial echocardiograms and determinations

Figure 1 - Admission surface electrocardiogram. Case No. 2. ST segment elevation in precordial (V2-V5) and limb leads (DI-AVL). Echocardiographic, neurohormonal and biochemical changes during the administration of the rescue protocol for left ventricular systolic dysfunction.
Table 2 - Echocardiographic, neurohormonal and biochemical changes during administration of the rescue protocol for left ventricular systolic dysfunction

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>12 hours</th>
<th>24 hours</th>
<th>48 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norepinephrine (pg/ml)</td>
<td>1727.50 ± 795.96</td>
<td>858.50 ± 433.16 ***</td>
<td>1159 ± 1119.16</td>
<td>526.75 ± 273.73 ***</td>
</tr>
<tr>
<td>Troponin I (ng/ml)</td>
<td>24.53 ± 14.09</td>
<td>14.05 ± 6.55</td>
<td>5.43 ± 3.57 *</td>
<td>2.20 ± 2.36 ***</td>
</tr>
<tr>
<td>Ejection fraction</td>
<td>0.20 ± 0.056</td>
<td>0.32 ± 0.059</td>
<td>0.39 ± 0.043 *</td>
<td>0.46 ± 0.045 *</td>
</tr>
</tbody>
</table>

*p < 0.002, • p < 0.01, ** p < 0.04, *** p < 0.02

of troponin I and of norepinephrine showed a dramatic improvement in left ventricular function and a decrease in the extent of sympathetic activation and of myocardial necrosis, within twelve hours of having initiated the antiadrenergic rescue protocol for left ventricular systolic dysfunction. During this period, patients received diuretics, beta-adrenergic agonists and amiodarone. The former two drugs are known to increase sympathetic activation and mortality in the presence of left ventricular dysfunction, whereas amiodarone has opposite effects on sympathetic activation and mortality. Therefore, the very favorable effects of our antiadrenergic rescue protocol are very likely secondary to the sympatholytic and vagotonic actions of amiodarone.

Norepinephrine serum levels directly correlated with troponin I and inversely with the left ventricular ejection fraction

A possible explanation for these findings is provided by a recent clinical study, which simultaneously assessed myocardial perfusion, left ventricular function and regional wall motion.
Reversible myocardial perfusion defects were topographically associated with regional wall motion abnormalities (RWMA). Furthermore, improvement in left ventricular function and RWMA paralleled normalization of myocardial perfusion. In other words, norepinephrine, through its direct effects on the myocardium (i.e. necrosis) and on coronary microcirculation (i.e. vasospasm) is very likely responsible for both myocardial necrosis and left ventricular systolic dysfunction.

Conclusion
Although patients had received antivenin at the site of the accident, the time interval between the accident and antivenin administration was outside the optimal time window for its beneficial effects. This probably explains the progression of the envenomation to the stage of pulmonary edema and shock. We should emphasize that our report is an open and non-randomized study based on a small number of cases. Our encouraging findings provide a therapeutic alternative to a potentially harmful strategy based on high doses and long-term administration of beta-adrenergic agonists. A prospective and randomized rescue protocol, based on the neuromodulatory effects of amiodarone, should be performed.

References

