SUBTOTAL SPLENECTOMY FOR SPLENIC ABSCESS

Esplenectomia subtotal para abscesso esplênico

Rachid Guimarães NAGEM, Andy PETROIANU

INTRODUCTION

Splenic abscess generally occurs in patients with neoplasia, immunodeficiency, hemoglobinopathies, trauma, metastatic infection, splenic infarct and diabetes. This condition, although rare, has high mortality rates. Despite the proven safety and efficacy of percutaneous drainage technique, surgery remains as the gold standard for splenic abscess therapy. Total splenectomy was considered the best surgical procedure until recently. Today the susceptibility to infection and thromboembolic events after splenectomy has been emphasized and conservative procedures over the spleen are quite common. In subtotal splenectomy the spleen is resected and its upper part is kept in place. Viability is warranted by splenogastric vessels.

CASE REPORT

A 49-year-old man was admitted to emergency department with retrosternal chest pain. Electrocardiogram (ECG) and cardiac enzymes revealed acute myocardial infarction (AMI) and thrombolytic therapy was used with satisfactory results. Two days later the patient complained sudden onset of upper left quadrant pain. Abdominal ultrasound (US) and computed tomography (CT) showed a large collection inside the spleen and the diagnosis of spontaneous intrasplenic hematoma secondary to thrombolytic agent was established. Non surgical treatment was indicated. The patient was doing well until two weeks later when he presented with abdominal pain, fever with chills and leukocytosis. An multiloculated splenic collection involving almost the entire organ, suggesting abscess, was identified by CT (Figure 1). US-guided needle aspiration confirmed the diagnosis. Supraumbilical laparotomy was carried out through a midline incision and subtotal splenectomy was performed (Figures 2 and 3). The organ was dissected free from its attachments and brought towards the anterior abdominal wall. Then all the splenic vessels were ligated except the splenogastric ones. The spleen was divided using the ischemic transition area as a landmark. The remnant was sutured with 2-0 chromic catgut stitches (Figures 4 and 5). Culture samples grew staphylococcus aureus and the patient received venous antibiotic treatment for thirty days before being discharged. At 1 year follow-up he was asymptomatic and disease-free (Figure 6).
DISCUSSION

Splenic abcess is a rare entity. Autopsy studies suggest an incidence of 0.14% to 0.7%. In a series of 18960 CT of the abdomen, only three cases of splenic abscesses were found. Mortality rates of 12 to 47% have been reported. In large series and reviews the etiologic factors recognized are metastatic infection from other sites, such as bacterial endocarditis, secondary infection of splenic infarction such as hemoglobinopathies, trauma to the spleen, immunodeficiency state and contiguous infection by direct spread. In this case, the patient was receiving multiple intravenous drugs, what is a cause for transitory bacteremia with posterior infection of the hematoma. The most common organisms obtained from culture of these abscesses are aerobic microbes, in particular the staphylococci (like this case), streptococci, salmonella and escherichia coli. Anaerobic organisms are less frequently encountered and this may be due to the difficulty in culturing these microbes. Mycobacteria and fungi are being increasingly reported in immunosuppressed patients. Splenic abscesses are polymicrobial in 36% of cases. The diagnosis on clinical grounds is difficult. Fever is present in 90% of patients.
but the classical triad of fever, left upper quadrant pain and splenomegaly is seen in only one third of patients. Fortunately the present case did not present any difficult for the diagnosis. Empiric broad spectrum antibiotics are used in the initial management and changed according to culture results. A plain abdominal x-ray can show a soft tissue mass in the left upper quadrant, displacement of the gastric bubble, elevation of the left hemidiaphragm or a left pleural effusion. Abdominal US is cost-effective, non-invasive and very useful for percutaneous drainage. With a sensitivity of 96%, CT is presently the gold standard to establish the diagnosis. Medical therapy with antibiotics alone have been reported in patients considered unfit for surgical intervention but is the exception rather than the rule. Nonetheless, antibiotics must be kept for at least two weeks even in the surgical patients. Surgical options include percutaneous aspiration, percutaneous catheter drainage, open drainage and splenectomy (partial or total, open or laparoscopic). Recently it was reported the first case of a splenic abscess treated definitively with endoscopic transgastric drainage. In the past, surgical treatment for splenic abscesses was by splenotomy. Later, splenectomy had been the gold standard of treatment for splenic abscess in the literature. Nowadays the importance of preserving splenic function, whenever possible, is well known. Percutaneous drainage is indicated for uniloculated or biloculated abscesses and for high-risk surgical patients. Splenic resection is indicated for failed percutaneous drainage or multiloculated abscesses. We have demonstrated that the upper part of the spleen vascularized by splenogastric vessels had satisfactory immune function. In this case that was the only part of the organ free of abscess loci, therefore subtotal splenectomy was the last chance to preserve some splenic tissue. Once provided adequate (spectrum and length of use) antibiotic therapy the patient has recovered uneventfully.

CONCLUSION

Subtotal splenectomy is an effective option in splenic abscess surgical therapy.