CLINICAL LIVER TRANSPLANTATION WITHOUT VENOVENOUS BYPASS

Transplante de figado clínico sem desvio venovenoso

Olival Cirilo Lucena da FONSECA-NETO

From Oswaldo Cruz University Hospital, Recife, PE, Brazil.

ABSTRACT – Introduction – The use of a venovenous bypass in liver transplantation is a controversy source and discussion among anesthetists and transplant surgeons. Although it provides a stable hemodynamic state and metabolism during the anhepatic stage, venovenous bypass may lead to a number of complications, some of them with death. Aim – To review the current practice of using clinical venovenous bypass in liver transplantation, with its advantages and disadvantages. Method – A broad review of the literature was carried out, paying especial attention to articles published in the past ten years and indexed in PubMed and Medline. The following cross-referenced headings were used: liver transplantation, venovenous bypass, conventional technique, classic technique. The articles chosen for analysis were those of the greatest relevance and those considered “classics” in the subject. Conclusion – Liver transplantation without venovenous bypass is a safe and rapid technique. In most cases it can be used without giving rise to serious complications in patients with liver disease.

INTRODUCTION

Liver transplantation (TxF) is considered the definitive treatment for patients with terminal liver disease. The conventional technique involves removing the diseased liver combined with the retrohepatic superior vena cava. During this procedure the inferior vena cava is interrupted in its suprahepatic portion. Associated with this, the portal vein has ceased its flow to the liver causing infradiaphragmatic venous stasis. Hemodynamic changes are established during this phase, anhepatic phase (when the diseased liver is removed). Cardiac output and mean arterial pressure decrease from the present baseline and may result in intraoperative and postoperative complications. The hemodynamic and metabolic handling of the patient at the moment is a clinical challenge.

To avoid the consequences of hemodynamic and metabolic disruption cavo-portal venous, venovenous bypass (DVV) has been used. Initial experiments were published in 1983 and was soon spread throughout the world. Since then, DVV has been used in various forms, including clinical (DVVC) and non-clinical bypasses. DVVC has been used to establish a stable hemodynamic state during the anhepatic phase of liver transplantation. The technique involves the creation of a conduit between the inferior vena cava and the right atrium, allowing blood to flow from the inferior vena cava to the right atrium, bypassing the diseased liver. This technique has been shown to improve hemodynamic stability during the anhepatic phase and has been associated with improved patient outcomes.

dissection after percutaneous insertion but was widely adhered to. Remember that Cutrópia in 1972 had used the DVV in experimental TxF. With it, the blood returns to the heart and allows hemodynamic stabilization. Its use can cause complications such as vascular thrombosis and pulmonary embolism, major or minor vascular injuries, air embolism, hematoma, seroma, nerve damage and wound infection. These complications have the potential to compromise the function of the liver graft, can lead to retransplantation and receptor death.

Looking to avoid the hemodynamic complications of conventional technique and the inherent complications of using a new technique of DVV hepatectomy was used in TxF: "piggyback technique." It consists of removing the retrohepatic diseased liver preserving the vena cava. Thus, the continuity of the venous drainage infradiaphragmatically continues to decrease the hemodynamic consequences of the conventional technique without DVV. Although described for the 1st time in 1968 only was popularized in the late 1980s. However, the piggyback has been considered only in favorable anatomical conditions and then, returns the problem of whether or not the DVV in TxF must be done.

The purpose of this article is to review the present practice of using clinic DVV in liver transplant, with its advantages and disadvantages.

METHOD

Was performed extensive research in the literature, with special attention to articles published in the last 10 years and indexed by PubMed and MedLine. Were used the following cross headings: liver transplantation, venovenous bypass, conventional technique, classic technique. The initial search revealed 286 articles, being evaluated the most relevant of the last 10 years, when the full texts were available for reading, besides older articles considered "classics" on the issue.

The venovenous bypass in liver transplantation

To perform the TxF in dogs was necessary to develop venovenous bypass because the animals did not tolerate abdominal vascular clamping. The first human liver transplants were performed with venovenous bypass, but due to the high incidence of embolic phenomena from the intravenous tubes it was abandoned. Due to coagulation disorders found in patients with liver disease, systemic anticoagulation could not be used and, thus, reinforced the idea of abandoning the DVV. However, the Denver group, led by Starzl, found that humans tolerate the anhepatic phase without DVV. Were done 170 TxF in Denver, and 63 in Pittsburgh without DVV. But in 1982 after six intraoperative deaths (during the anhepatic phase) it was restrict. Now, it would be simpler. Only one-roller pump with tubes coated with heparin are being used. After successful experimental TxF, its clinical use spread quickly throughout the world.

Advantages and disadvantages of DVV

The conventional TxF causes venous congestion in the infradiaphragmatic territory and thereby decrease cardiac output and blood pressure. Its use decompresses the splanchnic circulation and lower extremities of the body allowing more stability in the anhepatic TxF. Thus, the DVV restores normal physiology and reduces renal congestion during the interruption of the inferior vena cava. In patients with pulmonary hypertension with cardiac dysfunction or cardiomyopathy also seems to benefit from the DVV (reducing the overflow on the heart during the anhepatic phase, and especially after coronary graft artery bypass). Renal function, using the DVV is widely supported because it would reduce the occurrence of renal dysfunction in the postoperative period. It was also shown that greater balance in the cerebral circulation occurs with the use of DVV, especially in patients with acute liver failure. Pulmonary changes in postoperative TxF are less frequent use of the DVV. All these phenomena occur due to interruption of the inferior vena cava and portal vein was attenuated with DVV. Among the disadvantages of DVV are the possibility of thromboembolic events with fatal outcome. Air embolism is described and usually severe. Hypothermia is related to duration of DVV and may compromise the initial function of the graft. Complications of vascular access is considered to be minor can influence the quality of life after TxF.

Recent studies have shown increased release of inflammatory cytokines using the DVV with adverse clinical effects. Moreover, there is an increase in the cost of TxF associated with the equipment and the perfusionist prolonged operation.

Several authors have shown that the "piggyback" technique could replace the use of DVV; it would allow continued blood flow in the inferior vena cava. These authors reported lower hemodynamic complications, renal, cardiac, cerebral than when using the DVV. Only failed to show better results for pulmonary complications. However, using the piggyback technique remains the splanchnic congestion that may influence the severity of reperfusion syndrome (cardiovascular collapse after the "new" liver in the recipient's blood rich in substances like potassium, cytokines, peroxide radicals, among others) and complicating the evolution of graft. To avoid
congestion in the splanchnic piggyback can be used to temporary portacaval shunt25. In the piggyback technique with or without portacaval shunt, surgical time increases and can compromise the results of TxF. Moreover, the piggyback technique can be difficult due to anatomical features of the native liver (enlarged segment I and/or bypassing the inferior vena cava) and inflammatory (intense adhesions between the liver and abdominal wall, segment I and inferior vena cava). New complications arose with the advent of piggyback technique, vascular ones, related to anastomosis of the hepatic veins and inferior vena cava leading to obstruction of the venous graft for hepatic inferior vena cava (“outflow” blocking),6 providing congestion, ascites, liver retransplantation and death. Thus, the piggyback technique also has its drawbacks (Figure 1).

The conventional liver transplantation without venovenous bypass

In the early era of liver transplantation, the conventional technique was performed and, due to infradiaphragmatic venous interruption and prolonged operation, complications were described as gastrointestinal edema, hemorrhage, renal and pancreatic failure and weight gain. After almost 50 years of the 1st TxF in humans, alterations and additions in the knowledge of the hemodynamic changes of these patients were acquired by changing the management of these critically ill patients in the perioperative period9. Despite the hyperdynamic circulation and various syndromes (hepatorenal, hepatopulmonary hepatocirculatory, hepatoadrenal) better handling with fluid replacement, vasopressors and best technique (more delicate dissection and shorter operative time) have attenuated the postoperative complications after TxF13. New knowledge on the coagulation of cirrhotic patients changed the use of blood products intraoperatively (downwards) and added the use of synthetic (recombinant or not) as the best choice14. Changes in replacement of platelets, even in a critical situation due to its association with Tralli (acute lung injury related to blood transfusions) were also done29. Several studies have shown that cardiovascular dysfunction in the anhepatic TxF conventional procedure without venovenous bypass is quickly overcome by the use of vasopressors and fluids with discrete effects on cardiac and urinary output30.

The onset of renal dysfunction in the postoperative period without conventional DVV, is increased in most studies7. However, it is a temporary disturbance and low morbidity, even compared with the piggyback technique18. These studies suggest that in patients without renal dysfunction prior TxF tolerate interruption of cavo-portal blood flow without venovenous bypass and without significant renal dysfunction postoperatively16,28. The better understanding of physiopathological complications of portal hypertension in patients with liver disease have allowed better management of perioperative fluids with the use of more appropriate, more specific vasoconstrictor drugs and protective substances in target organs such as brain, heart and kidney, leading to better results in the post TxF, despite the use of conventional technique without venovenous bypass10,11,15,19 (Figure 2).

The better understanding of physiopathological complications of portal hypertension in patients with liver disease have allowed better management of perioperative fluids with the use of more appropriate, more specific vasoconstrictor drugs and protective substances in target organs such as brain, heart and kidney, leading to better results in the post TxF, despite the use of conventional technique without venovenous bypass10,11,15,19 (Figure 2).

CONCLUSION

Liver transplantation without venovenous bypass technique is safe and fast. Can be used, with few exceptions, without causing major complications in patients with liver disease.

REFERENCES

