ABSTRACT – Introduction - Roux-en-Y gastric bypass may result in stenosis of the gastrojejunal anastomosis. There is currently no well-defined management protocol for this complication. Aim - Through systematic review, to analyze the results of endoscopic dilation in patients with stenosis, including complication and success rates. Methods - The PubMed database was searched for relevant studies published each year from 1988 to 2010, and 23 studies were identified for analysis. Only papers describing the treatment of anastomotic stricture after Roux-en-Y gastric bypass were included, and case reports featuring less than three patients were excluded. Results - The mean age of the trial populations was 42.3 years and mean preoperative body mass index was 48.8 kg/m². A total of 1,298 procedures were undertaken in 760 patients (81% female), performing 1.7 dilations per patient. Through-the-scope balloons were used in 16 studies (69.5%) and Savary-Gilliard bougies in four. Only 2% of patients required surgical revision after dilation; the reported complication rate was 2.5% (n=19). Annual success rate was greater than 98% each year from 1992 to 2010, except for a 73% success rate in 2004. Seven studies reported complications, being perforation the most common, reported in 14 patients (1.82%) and requiring immediate operation in two patients. Other complications were also reported: one esophageal hematoma, one Mallory-Weiss tear, one case of severe nausea and vomiting, and two cases of severe abdominal pain. Conclusion - Endoscopic treatment of stenosis is safe and effective; however, further high-quality randomized controlled trials should be conducted to confirm these findings.

RESUMO – Introdução – Bypass gástrico em Y-de-Roux pode resultar em estenose de anastomose gastrojejunal. Não há protocolo de tratamento bem definido para essa complicaçã. Objetivo – Analisar os resultados da dilatação endoscópica em pacientes com estenose, através de revisão sistemática, incluindo complicações e taxa de sucesso. Métodos – Foi realizada busca dos estudos relevantes publicados de 1988 a 2010 na base de dados do PubMed, sendo identificados 23 estudos para análise. Apenas os que descreviam o tratamento de estenose de anastomose após bypass gástrico em Y-de-Roux foram incluídos e relatos de caso que apresentavam menos de três pacientes foram excluídos. Resultados – A idade média da população foi de 42,3 anos e o índice de massa corpórea pré-operatório médio foi de 48,8 kg/m². No total, 760 pacientes (81% feminino) foram submetidos a 1298 procedimentos, sendo realizadas 1,7 dilatações por paciente. Balões Through-the-scope foram utilizados em 16 estudos (69,5%) e dilatador de Savary-Gilliard em quatro. Apenas 2% dos pacientes necessitaram revisão cirúrgica após a dilatação; a taxa de complicações reportada foi de 2,5% (n=19). A taxa de sucesso anual foi maior que 98% nos anos 1992 a 2010, exceto por uma de 73% em 2004. Sete estudos relataram complicações, sendo perfuração a mais comum, relatada em 14 pacientes (1,82%), necessitando operação imediata em dois pacientes. Outras complicações foram também relatadas: um hematoma esofágico, uma lesão de Mallory-Weiss, um caso grave de náusea e vômito, e dois casos de dor abdominal importante. Conclusão – Tratamento endoscópico de estenose é seguro e eficaz; entretanto, mais estudos controlados randomizados devem ser realizados a fim de confirmar esses achados.
INTRODUCTION

Among the many options for surgical treatment of obesity, Roux-en-Y gastric bypass (RYGB) is currently one of the most performed procedures. The gastrojejunostomy is purposely constructed with a small diameter, and the rate of stricture can be as high as 27% after laparoscopic procedures. Stricture usually occurs at approximately one month after bariatric surgery, and may be classified as early or late (within or longer than 30 days after operation, respectively).

Review of the literature does not indicate the gold standard treatment for stricture. Since reoperation is rarely performed because of its complexity and the resulting morbidity, endoscopic dilation treatment seems to be a global trend. Perugini et al. found that more than half of the complications after RYGB in their series were due to anastomotic stricture, demonstrating the morbidity associated with this outcome.

There is no consensus on whether the Savary-Gilliard bougie or the through-the-scope (TTS) balloon is the best device for the endoscopic treatment of anastomotic stenosis. Most studies advocate the TTS balloon to treat stenosis, but two studies achieved success using Savary-Gilliard bougies. Here is discussed the various aspects of each method, including device diameters, dilation times, and complications.

This systematic review analyzed published trials describing the treatment of stricture of the gastrojejunal anastomosis after RYGB, with emphasis on endoscopy as an effective and safe method for treating this condition.

METHODS

Search strategy
The literature search was conducted during January 2010. Was searched the PubMed electronic database using the following terms: (“Gastric Bypass/adverse effects”[Mesh] OR “Gastroenterostomy/adverse effects”[Mesh] OR “Anastomosis, Roux-en-Y/adverse effects”[Mesh]) AND (“Dilatation” OR “Reoperation”), to identify relevant studies describing the stenosis’ treatment on gastrojejunal anastomosis after RYGB.

Study selection
Initially, titles and abstracts were screened, and original articles were evaluated if they included patients who had undergone RYGB and had any complications related to this surgery. Fifty-two of the studies reported on stenosis of the gastrojejunal anastomosis after RYGB. Of these, the 23 papers which reported on dilation to treat stricture were included. No randomized controlled trials of treatment for stricture after RYGB were identified. The electronic database was searched over a period of 23 years, and inclusion and exclusion criteria were determined to define the study population. Two researchers examined the full texts of the selected studies.

Studies that met the following criteria were selected: original article, English language, published between 1988 and 2010, full text available, reports of patients with anastomotic stenosis after RYGB and description of treatment for this complication. Review articles, commentary, editorials, sample size smaller than three patients, duplicate articles or not bariatric surgery were excluded from this systematic review. Furthermore, studies that did not report the following data were also excluded: number of patients, type of dilator, and number of dilations.

All potential differences in interpretation between the reviewers were discussed, to ensure that all the articles reviewed presented a satisfactory level of evidence.

Identified studies
The literature search described above yielded 252 studies. A total of 23 published from 1988 to 2010 were abstracted and included in the systematic review. Figure 1 shows the results of initial searches for inclusion.

FIGURE 1 - Flow diagram of trials for the systematic review

Data abstraction
Data were abstracted from every selected study. The following variables were retrieved from the full text of each report: 1) number of patients, 2) type of stapler, 3) setting of procedure, 4) type of anesthesia, 5) type of dilator/balloon, 6) diameter of dilator/balloon, 7) number and duration of dilations, 8) complications and 9) surgical revision (Table 1).
Data analysis

Was summarized the available information from all trials which reported their results. Analyses were performed only on the studies which met the inclusion criteria. Data as number of dilation and surgical procedures were analyzed using Statistical Package for Social Sciences (SPSS) software.

Some variables regarding the type of anesthesia, type of stapler, and anastomosis technique were interpreted using a “multiple answers” method, compatible with SPSS.

As this systematic review did not aim to compare studies from only a statistical point of view, descriptive and exploratory analyses were also employed. Quantitative and qualitative variables were extracted and the mean, maximum, minimum, and standard deviation were calculated.

If a study failed to report any of the variables, this was classified as “not reported.” Was then analyzed the results comparing only the available data.

RESULTS

A total of 760 subjects were included in the 23 selected studies. Nineteen were based in the USA, one in Spain, and the remaining three in South America (Brazil, Chile and Argentina). Twelve of the 23 studies (52.17%) were published from 2007 to 2009 and only one of the included studies was published in 2010.

All included studies reported endoscopic or radiologic interventions for stricture of the gastrojejunal anastomosis after RYGB. The mean age of patients in the trial populations was 42.3 years (range 17–72 years). Every study that reported patient characteristics included both females and males, and approximately 81% of all patients were female. Sixteen studies reported the mean preoperative body mass index (BMI), and the overall mean BMI was 48.8 kg/m² (range 35–103 kg/m²).

Eighteen studies described the method of RYGB surgery, and all used laparoscopy. There were no randomized controlled trials. Fourteen studies were retrospective, five were prospective, and four did not report their design. A total of 1,298 dilations in 760 patients were reported, which is an average of 1.7 dilations per patient.

Regarding the number of patients undergoing endoscopic dilatation per year, there was a greater number between the years 2007 and 2010, comprising approximately 66%, with the highest annual number of procedures in 2008 (25.8%).

One study, which included 40 patients with anastomotic stricture, reported a case of completely

Table 1 - Data extracted from each study selected

<table>
<thead>
<tr>
<th>Author</th>
<th>n</th>
<th>Stapler</th>
<th>Setting</th>
<th>Anesthesia</th>
<th>Dilatations (n)</th>
<th>Balloon/ Dilator (mm)</th>
<th>Balloon/ Dilator (min)</th>
<th>Duration (min)</th>
<th>Complications</th>
<th>Success (%)</th>
<th>Reoperation (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmad J et al. 2003a</td>
<td>14</td>
<td>SNE</td>
<td>NR</td>
<td>NR</td>
<td>23</td>
<td>TTS</td>
<td>10 - 25</td>
<td>1</td>
<td>No</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Alasfar E et al. 2009a</td>
<td>29</td>
<td>circular</td>
<td>outpatient</td>
<td>conscious sedation</td>
<td>36</td>
<td>TTS</td>
<td>10 - 12</td>
<td>1</td>
<td>No</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Barba CA et al. 2003a</td>
<td>24</td>
<td>circular</td>
<td>outpatient</td>
<td>conscious sedation</td>
<td>33</td>
<td>TTS</td>
<td>8 - 13</td>
<td>1</td>
<td>No</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Bell RL et al. 2003a</td>
<td>3</td>
<td>linear</td>
<td>outpatient</td>
<td>conscious sedation</td>
<td>6</td>
<td>Savary or TTS</td>
<td>5 - 20 (Savary)</td>
<td>1 - 3</td>
<td>No</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Caro L et al. 2008a</td>
<td>111</td>
<td>NR</td>
<td>NR</td>
<td>conscious sedation</td>
<td>200</td>
<td>TTS</td>
<td>6 - 18</td>
<td>1</td>
<td>Yes</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Catalano MF et al. 2007a</td>
<td>26</td>
<td>circular</td>
<td>outpatient</td>
<td>conscious sedation</td>
<td>63</td>
<td>TTS</td>
<td>8 - 15</td>
<td>1</td>
<td>No</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Costa AF et al. 2009a</td>
<td>30</td>
<td>NR</td>
<td>outpatient</td>
<td>conscious sedation</td>
<td>48</td>
<td>Savary or TTS</td>
<td>max 12.8 (Savary)</td>
<td>NR</td>
<td>No</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Dolce CJ et al. 2009a</td>
<td>11</td>
<td>circular</td>
<td>NR</td>
<td>hand-sewn</td>
<td>11</td>
<td>TTS</td>
<td>10 - 18</td>
<td>NR</td>
<td>No</td>
<td>90.9</td>
<td>1</td>
</tr>
<tr>
<td>Escalona A et al. 2007a</td>
<td>53</td>
<td>hand-sewn</td>
<td>NR</td>
<td>conscious sedation or general anesthesia</td>
<td>71</td>
<td>Savary or TTS</td>
<td>max 11</td>
<td>NR</td>
<td>Yes</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Fernandez-Esparreg et al. 2008a</td>
<td>24</td>
<td>circular</td>
<td>outpatient</td>
<td>conscious sedation</td>
<td>38</td>
<td>Savary or TTS</td>
<td>7 - 12.8</td>
<td>NR</td>
<td>No</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Lee JK et al. 2009a</td>
<td>40</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>86</td>
<td>TTS</td>
<td>6 - 18</td>
<td>1</td>
<td>No</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Mathew A et al. 2009a</td>
<td>58</td>
<td>circular</td>
<td>linear</td>
<td>conscious sedation</td>
<td>125</td>
<td>NR</td>
<td>6 - 12</td>
<td>NR</td>
<td>Yes</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Mishkin JD et al. 1988a</td>
<td>7</td>
<td>linear</td>
<td>NR</td>
<td>NR</td>
<td>7</td>
<td>Balloon</td>
<td>12 - 15</td>
<td>NR</td>
<td>No</td>
<td>42.8</td>
<td>4</td>
</tr>
<tr>
<td>Nguyen NT et al. 2003a</td>
<td>29</td>
<td>circular</td>
<td>outpatient</td>
<td>conscious sedation or general anesthesia</td>
<td>35</td>
<td>TTS</td>
<td>18</td>
<td>±1</td>
<td>No</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Peifer KJ et al. 2007a</td>
<td>43</td>
<td>circular</td>
<td>hand-sewn</td>
<td>NR</td>
<td>56</td>
<td>TTS</td>
<td>9 - 20</td>
<td>NR</td>
<td>Yes</td>
<td>97.6</td>
<td>1</td>
</tr>
<tr>
<td>Rajdeo H et al. 1989a</td>
<td>8</td>
<td>linear</td>
<td>inpatient</td>
<td>conscious sedation or general anesthesia</td>
<td>11</td>
<td>TTS</td>
<td>6 - 20</td>
<td>2</td>
<td>No</td>
<td>87.5</td>
<td>1</td>
</tr>
<tr>
<td>Rossi TR et al. 2005a</td>
<td>38</td>
<td>circular</td>
<td>NR</td>
<td>NR</td>
<td>61</td>
<td>NR</td>
<td>NR</td>
<td>2</td>
<td>Yes</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Ryskina KL et al. 2010a</td>
<td>58</td>
<td>circular</td>
<td>hand-sewn</td>
<td>NR</td>
<td>117</td>
<td>TTS</td>
<td>8 - 15</td>
<td>NR</td>
<td>No</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Sanyal AJ et al. 1992a</td>
<td>20</td>
<td>NR</td>
<td>outpatient or inpatient</td>
<td>conscious sedation</td>
<td>23</td>
<td>TTS</td>
<td>10 - 12</td>
<td>1</td>
<td>No</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Schwartz ML et al. 2004a</td>
<td>30</td>
<td>NR</td>
<td>NR</td>
<td>Balloon</td>
<td>68</td>
<td>Balloon</td>
<td>10 - 18</td>
<td>NR</td>
<td>Yes</td>
<td>73.3</td>
<td>8</td>
</tr>
<tr>
<td>Takata MC et al. 2007a</td>
<td>15</td>
<td>circular</td>
<td>linear</td>
<td>conscious sedation</td>
<td>22</td>
<td>TTS</td>
<td>6 - 20</td>
<td>NR</td>
<td>No</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Ukleja A et al. 2008a</td>
<td>61</td>
<td>circular</td>
<td>linear</td>
<td>conscious sedation</td>
<td>128</td>
<td>TTS</td>
<td>6 - 18</td>
<td>1</td>
<td>Yes</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Vance PL et al. 2002a</td>
<td>28</td>
<td>NR</td>
<td>NR</td>
<td>conscious sedation</td>
<td>41</td>
<td>Balloon</td>
<td>20</td>
<td>1 - 3</td>
<td>No</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

TOTAL=23 artigos (100%) 760

15 (65.2%) stapler 2 (8.7%) staple or hand-sewn 1 (4.3%) hand-sewn 5 (21.7%) NR
1 (9.8%) outpatient 4 (1.4%) inpatient 1 (4.3%) outpatient or inpatient 12 (52.1%) NR
12 (52.1%) conscious sedation 2 (8.7%) conscious sedation or general anesthesia 9 (39.1%) --> NR
1298

TTS: trough the scope balloon. Savary: Savary-Gilliard dilator.
obstructed stenosis treated with a needle-knife in the operating room under laparoscopic control16. Gastrointestinal anastomosis was regularly performed using a mechanical stapler (linear or circular) in 16 studies, accounting for almost 70% of the series.

Five studies did not state the method of anastomosis. Of the 18 studies describing the method of anastomosis, 12 (70.5%) used a circular stapler and, of five of them, also used either manual suturing20,24 or a linear stapler17,28,29. Four studies used a linear stapler only4,18,22,26 and one study used manual suturing only11. One study did not describe the type of stapler5. Manual suturing resulted in a higher number of dilations compared with using staplers, but a lower average number of dilations per patient (Table 2).

TABLE 2 – Correlation between aspects of dilation and type of anastomosis (manual or mechanical)

<table>
<thead>
<tr>
<th>Type of staple</th>
<th>Maximum diameter (TTS)</th>
<th>Number of dilations</th>
<th>Maximum time of dilation (min)</th>
<th>Average dilation</th>
<th>Success rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stapler*</td>
<td>25,00</td>
<td>23,00</td>
<td>1,00</td>
<td>1,64</td>
<td>100,00</td>
</tr>
<tr>
<td>Linear stapler</td>
<td>20,00</td>
<td>23,00</td>
<td>2,50</td>
<td>1,66</td>
<td>75,92</td>
</tr>
<tr>
<td>Circular stapler</td>
<td>16,56</td>
<td>60,42</td>
<td>1,17</td>
<td>1,62</td>
<td>99,05</td>
</tr>
<tr>
<td>Hand-sewn suture</td>
<td>--</td>
<td>71,00</td>
<td>--</td>
<td>1,34</td>
<td>100,00</td>
</tr>
<tr>
<td>Total</td>
<td>17,28</td>
<td>56,91</td>
<td>1,46</td>
<td>1,62</td>
<td>95,31</td>
</tr>
</tbody>
</table>

* Not specified the stapler type

Eleven studies specified the setting where endoscopic dilation was performed. The procedure was performed on an outpatient basis in 10 of these studies (91%), unless the patients were already hospitalized8 or needed hospital admission due to intolerance of solids or liquids3 or dehydration23. In one study, the procedures took place in hospital due to dehydration19.

Fourteen studies reported the type of anesthesia used. Conscious sedation was the most commonly used anesthetic technique for endoscopic treatment (86%). Only two of these 14 studies (14%) reported the use of either sedation or general anesthesia.

Two studies did not give details regarding the type of dilator used. Seventeen studies (81%) used balloons, and two Savary-Gilliard bougies exclusively11,12. Sixteen performed dilation using TTS, with two of them also using Savary-Gilliard bougies5,9. Dilations using Savary-Gilliard bougies were performed in a total of four studies (Figure 2). The use of other types of balloon such as angioplasty-type polyethylene balloon catheters30, polyvinyl chloride and polyethylene balloons20, and pneumatic balloons26 was also reported. One study did not state the type or diameter of dilator used23. Savary-Gilliard bougies ranged in diameter from 5 mm to 20 millimeters, and balloons ranged in diameter from 6 mm to 25 mm. The mean number of dilations reported per study was 57, and the mean number of dilations per patient was 1.62 (Table 3).

Thirteen studies reported the dilation time, which varied from 1 to 3 min. Eight studies (61.5%) mentioned 1 min, two (15.4%) 1–3 min, and two other (15.4%) 2 min. One (8%) left the balloon inflated until the waist disappeared, followed by another dilation lasting 30–60 s19.

Seven studies reported complications6,11,17,20,23,26,29 (Table 4). Perforation was the most common complication, reported in 14 patients (1.82%) and requiring immediate operation in two patients26. Complications were reported in five other patients: one esophageal hematoma6, one Mallory-Weiss tear (it was not clear if this was iatrogenic or was present before starting the procedure)20, one developed severe nausea and vomiting23, and two developed severe abdominal pain29.

Out of all 760 patients in the review, 15 (2%) required surgical revision for recurrent stenosis. A greater than 98% annual success rate was shown for endoscopic dilation each year from 1992 to 2010, except for a 73% success rate in 2004, which may be explained by the gastrojejunostomy band or balloon type used26.

DISCUSSION

Endoscopic dilation has become the elected treatment for gastrojejunostomy anastomosis stricture after RYGB, due to the low morbidity rate of this procedure. However there are no studies well designed
using a stapler, with the circular stapler being the two to four quadrants of the stricture stenostomy, using a needle-knife to make incisions in gastrojejunostomy fibrosis, should be treated with recurrent stricture after two dilations, or with stricture requiring other forms of treatment. Patients proved to be refractory to this therapy, with recurrent clinical resolution after a single procedure.

The average number of dilations needed by patients. The studies indicated that this average was 1.7 dilations per patient. This was consistent with the data reported by Caro et al.

Dilations were usually undertaken on an outpatient basis, except in the studies by Barba et al. who reported two patients who were hospitalized due to intolerance of solids or liquids after dilation, and Takata et al. who reported seven patients who were admitted to hospital for dehydration. Unfortunately, 12 studies did not report the settings of the endoscopic procedures.

Details regarding the method of anesthesia were not reported in 39.13% of studies. Twelve studies mentioned that the procedures were undertaken with conscious sedation.

Ahmad et al. reported that they were able to detect endoscopic evidence of stenosis with localized edema and inflammation around the anastomosis, and proposed dilation in patients with these features even if the patients were asymptomatic. There is no consensus regarding the best way to manage stenosis of the gastrojejunal anastomosis. Most studies used endoscopic treatment with balloon dilation, with the majority of authors preferring this method because they assumed that it was less likely to cause perforation. Escalona and Fernández-Esparrach used Savary-Gilliard bougies for dilation, with low complication rates, but this method may cause anastomotic leaks if used soon after bypass surgery.

When choosing a balloon size, it is essential to evaluate the patient's symptoms and assess the tightness of the stenosis. A hydrostatic balloon can be gradually inflated with saline solution under direct vision, controlled by an insufflator connected to a manometer.

There was an upwards trend in the number of dilations per year, but the mean number of dilations per patient was stable. This apparent contradiction is explained by the increasing number of patients per year. The smallest diameter of dilator reported in the studies

<table>
<thead>
<tr>
<th>Complications</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemorragia no esófago (n=3) (0.13%)</td>
<td>n=1 tratada medicamente com medidas conservadoras e antibiótico intravenoso.</td>
</tr>
<tr>
<td>Perforações (n=14) (1.86%)</td>
<td>n=2 operadas imediatamente.</td>
</tr>
<tr>
<td>Mallory-Weiss tear (n=1) (0.13%)</td>
<td>n=1 procedimento suspenso e repetido com sucesso após uma semana. De acordo com os autores, não ficou claro se a lesão foi iatrogênica ou prévia ao procedimento.</td>
</tr>
<tr>
<td>Severe nausea and vomiting (n=1) (0.13%)</td>
<td>n=1 hidratação.</td>
</tr>
<tr>
<td>Severe abdominal pain (n=2) (0.26%)</td>
<td>n=2 internação para observação e alta com 24 h, após estudo do TGI alto normal e ausência de sintomas.</td>
</tr>
</tbody>
</table>

TOTAL = 19 complicações (2.53%) / 760 pacientes

GI: gastrointestinal. UGI: upper gastrointestinal tract.
was 6 mm and the largest was 25 mm. An initial size of 12 mm seemed to be the best option. Huang et al. proposed that endoscopic dilation should not exceed 15 mm, to avoid weight regain, and this same author proposed in a later paper that the TTS balloon should be inflated to at least 15 mm to reduce the recurrence rate of stenosis.

Vance et al. reported perforations in three primary dilations using a 15 mm balloon, but some initial dilations used balloons up to 20 mm in diameter. Escalona et al. and Fernández-Esparrach et al. used Savary-Gilliard bougies for endoscopic therapy, reporting 71 and 38 dilation procedures, respectively. These authors reported successful dilation in all their patients. This procedure has a lower cost compared with using balloons, but has not gained popularity.

Procedure duration was not reported in 43.47% of the studies. Due to the different methods used in the 23 papers, it was difficult to perform comparative statistic analyses. The time from surgery to the emergence of symptoms was not precisely recorded, but most studies tended to diagnose stenosis and perform endoscopic dilation at approximately one month after RYGB, except for Mishkin et al. and Rossi et al., who undertook early dilation at seven and 10 days, respectively.

Ryskina et al. reported that dilator type, and initial and maximum balloon size, were determined by the gastroenterologist at the time of the procedure. The literature did not establish a recommended time for dilation procedures. Most authors dilated for 1 min, but the companies that manufacture the devices have not determined a recommended dilation time. The procedure should be stopped if the patient experiences abdominal pain, but otherwise the time of dilation depends on the preference and experience of the endoscopist. Dilation time did not exceed 3 min in any of the studies. The question on whether this short time represents a limit for this treatment, or whether the time could be prolonged to improve dilation results, has not been answered.

Regarding complications related to endoscopic treatment, Wetter reported a perforation and staple line dehiscence rate of 2-6% after TTS balloon dilation. In this review, dilation was associated with low morbidity and no mortality. The most common complication (perforation) occurred in 1.86% of patients, and most were treated conservatively. Ukleja et al. reported that three patients required surgical exploration, which did not find the perforation site; these patients were treated with fasting, drain placement, and intravenous antibiotics, with satisfactory outcomes.

More than two decades ago, Mishkin et al. introduced endoscopic dilation of stenosis of gastrojejunal anastomosis after RYGB, with disappointing results, but their report resulted in widespread use of this procedure to treat stenosis, reducing the need for reoperation.

Patients who develop recurrent stenosis or fibrosis of their gastrojejunal anastomosis after two dilations should be treated with stenostomy.

Stenosis of the gastrojejunal anastomosis required surgical treatment before endoscopic dilation was reported in the literature. Surgery is now seldom required for the treatment of stenosis, thereby reducing the morbidity inherent in the RYGB operation.

Further prospective, randomized, controlled trials should be conducted to further evaluate dilation in patients with stenosis of the gastrojejunal anastomosis after RYGB.

CONCLUSION

Endoscopic dilation is a safe and effective procedure with a low morbidity rate, which should be performed by skilled and experienced professionals with the correct equipment. This review illustrates that stricture of the gastrojejunal anastomosis is a common complication after gastric bypass surgery, which is usually diagnosed by endoscopy. Endoscopic dilation is a safe and effective procedure and a global trend on gastrojejunal anastomosis stricture treatment.

ACKNOWLEDGMENTS

We thank Joab de Oliveira Lima for helping with the statistical analyses.

REFERENCES

