Double-setting alpha-tricalcium phosphate cement provided with interconnection channels in rabbits after enucleation: A potential implant for the anophthalmic socket

1Universidade Estadual Paulista – UNESP – São Paulo, SP
2Universidade Federal da Bahia – UFBA, BA
3União Metropolitana de Educação e Cultura – UNIME – BA
4Universidade Federal do Rio Grande do Sul – UFRGS – Porto Alegre, RS

ABSTRACT

The purpose of this study was to evaluate the macroscopy and microstructure of a double setting alpha-tricalcium phosphate bone cement sphere provided with interconnection channels (alpha-TCP-i), as well as the integration of the implant with the rabbits' orbital tissue, through macroscopic analysis and histopathology. The external and internal surfaces of the alpha-TCP-i were evaluated macroscopically and by electron microscopy. Twelve New Zealand rabbits received 12mm implants of alpha-TCP-i following enucleation of the left eye. The clinical assessment was undertaken daily during the first 15 days, followed by fortnightly assessment until the end of the study period. For the morphological analysis, eneateration was performed in 3 animals per experimental period (15, 45, 90 and 180 days). The external and internal surfaces of the implant appeared solid, smooth and compact, with six channels which interconnected centrally. The microarchitecture was characterized by the formation of columns of hexagonal crystals. No signs of infection, exposure, dehiscence of sutures or extrusion of the implant were noted in any of the animals during the entire period of the study. The morphological evaluation demonstrated the presence of a thin capsule around the implant, from whence appeared fibro-vascular projections, which penetrated it through the interconnecting channels. In the first days after the insertion of the implant, an intense inflammatory reaction was noted. At 180 days, however, there were no signs of inflammation. The alpha-tricalcium phosphate cement implant was well tolerated in this rabbit model and appeared to be relatively inert with some fibrovascular ingrowth through the large channels.

Keywords: implant, eye, prosthesis

RESUMO

Avaliaram-se a macroscopia e a microestrutura de esferas compostas por cimento ósseo de alfa-fosfato tricálcico de dupla pega munido de canais de interconexão (alfa-TCP-i) e a integração do implante ao tecido orbital de coelhos através de análise macroscópica e histopatológica. A superfície interna e externa do alfa-TCP-i foi avaliada macroscopicamente e por microscopia eletrônica. Após enucleação do bulbo ocular esquerdo, 12 coelhos da raça Nova Zelândia receberam implantes de alfa-TCP-i com 12mm de diâmetro. A avaliação clínica foi realizada diariamente nos primeiros 15 dias e depois a cada quinze dias até o fim do período de estudo. Para análise morfológica, seguiu-se a exenteração de três animais por período experimental (15, 45, 90 e 180 dias). As superfícies externa e interna do implante mostraram-se compactas, sólidas e lisas, com seis canais que se interconectavam centralmente. A microarquitetura caracterizou-se pela formação de colunas de cristais hexagonais. Sinais de infecção, exposição, deiscência de sutura ou extrusão não foram notados em nenhum dos animais durante o período de estudo. A análise morfológica revelou a presença de fina cápsula ao redor do implante de onde surgiram projeções fibrovasculares que o penetraram.

Received in 22 de agosto de 2013
Accepted in 7 de agosto de 2014
*Autor para correspondência (corresponding author)
E-mail: arianneoria@ufba.br
INTRODUCTION

When the eye or its orbital content is removed due to surgical procedures such as enucleation, evisceration or exenteration, an anophthalmic cavity is formed, which is considered aesthetically unpleasant, being associated with a range of appearance-related psychosocial problems and decrease in quality of life for human patients (Wang et al., 2012). Biologically inert compounds such as glass, cartilage, bone, ivory, polymethylmethacrylate, silicone, porous polyethylene and hydroxyapatite (Christmas et al., 1998; Moshfeghi et al., 2000; Amato et al., 2003; Wang et al., 2012) can be used to replace the orbital volume, with consequent improvement in aesthetic appearance (Custer et al., 2003; Jordan et al., 2003; Wang et al., 2012). Even with the many suggested advantages of porous orbital implants, some surgeons continue to use acrylic, glass or silicone spheres, due to the costs of the integrateable implants (Chuah et al., 2004).

It is notable that the calcium phosphate compounds induce a minimal inflammatory reaction and are well tolerated, inert and bioactive (Bertol et al., 2010), having been used in various clinical specialties such as orthopedics, orthodontics and plastic surgery in general (Nakadate et al., 2008; Marukawa et al., 2010). However, its use in ophthalmic plastic surgery is still fairly rare (Oriá et al., 2006).

In face of the existence of various bio-materials which can be used for making ophthalmic implants (Christmas et al., 1998; Moshfeghi et al., 2000; Amato et al., 2003; Wang et al., 2012), the ideal one has still not been defined, so the quest continues for an implant which should be, at the least, less expensive and permit tissue integration. The double setting alpha-tricalcium phosphate bone cement provided with interconnection channels (alpha-TCP-i), in the form of 12mm spheres, was assessed, as orbital implants in rabbits submitted to enucleation.

METHODS

The research protocols were approved by the Ethics and Animal Well-Being Committee of the Faculty of Agricultural and Veterinary Sciences, UNESP, Jaboticabal Campus. The bioethical guidelines of the Association for Research in Vision and Ophthalmology (National Institutes of Health, Publication No. 85–23: Revised, 1985) for the use of animals in vision research were followed.

The spheres used were produced from alpha-TCP created and evaluated in vitro by one of the authors (Santos, 2002). The alpha-TCP powder was homogenized from the aqueous solution of dibasic sodium phosphate. A system of in situ polymerization based in the acrylamide was obtained, as described by one of the authors (Oriá A. P.) (Oriá et al., 2006).

The paste resulting from the homogenization was added to 12mm diameter silicon molds. Twenty-four hours later the spheres were removed from the molds and perforated with three orifices of 1.2mm diameter, using a perforator provided with a drill bit. These orifices transfixed the implant making six channels with a central intersection. The implants were weighed and the external surfaces were evaluated. In addition, attempts were made to break them between the thumb and forefinger (the pinch test), and the ease with which they could be penetrated with a 25x7 needle was ascertained (Jordan et al., 2000). After fragmentation, the internal surface was evaluated. For the evaluation of the implant’s external and internal surfaces with an electron microscope, the fragments were fixed in cylindrical 10 x 10mm (diameter x height) metal specimen-holders with the aid of adhesive tape. The samples were placed in a metallizer (DESK II, DentonVacuum, USA) for covering with a thin layer of gold (35-nm). For determining the porosity, micrographs were taken with an electron micrograph (JSM: 5410, JEOL, Japan); these were obtained at 15 kV with 50, 750 and 1500 x magnification. The measuring bar was

Palavras-chave: implante, olho, prótese

INTRODUÇÃO

Quando o olho ou seu conteúdo orbital é removido devido a procedimentos cirúrgicos como enucleação, evisceração ou exenteração, é formado um vazio anofthalmico, considerado esteticamente desagradável, associado a uma variedade de problemas relacionados à aparência que afetam a qualidade de vida para pacientes humanos (Wang et al., 2012). Compósitos biologicamente inérrto como vidro, cartilagem, ossos, ibiônio, polimetilmetacrilato, silicone, polietileno poroso e fosfato de hidroxiapatita (Christmas et al., 1998; Moshfeghi et al., 2000; Amato et al., 2003; Wang et al., 2012) podem ser utilizados para substituir o volume orbital, resultando em melhoria estética (Custer et al., 2003; Jordan et al., 2003; Wang et al., 2012). Mesmo com os muitos aspectos favoráveis de implantes orbitais porosos, alguns cirurgiões continuam a utilizar acrílico, vidro ou esferas de silicone, devido aos custos dos integrações.

É notável que os compostos de fosfato de cálcio induzem uma reação inflamatória mínima e são bem tolerados, inertes e permitem infiltração tecidual (Bertol et al., 2010), tendo sido usados em várias especialidades clínicas como ortopedia, ortodontia e cirurgia plástica em geral (Nakadate et al., 2008; Marukawa et al., 2010). No entanto, o uso em cirurgia ocular é ainda relativamente raro (Oriá et al., 2006).

Diante da existência de vários materiais biológicos que podem ser usados para fabricar implantes oculares (Christmas et al., 1998; Moshfeghi et al., 2000; Amato et al., 2003; Wang et al., 2012), o ideal ainda não foi definido, por isso a busca continua para um implante que deve ser, pelo menos, menos caro e permitir integração tecidual. O cimento de a-TRC do tipo i (alpha-TCP-i), na forma de esferas de 12mm, foi avaliado como implantes orbitais em coelhos submetidos a enucleação.

MÉTODOS

Os protocolos de pesquisa foram aprovados pelo Comitê de Ética e Bem-estar Animal da Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal Campus. As diretrizes bioéticas da Associação para Pesquisa em Visão e Oftalmologia (Nível de Saúde, Publicação No. 85–23: Revisto, 1985) para o uso de animais na pesquisa ocular foram seguidas.

As esferas foram produzidas a partir de a-TCP criado e avaliado in vitro por um dos autores (Santos, 2002). O pó de a-TCP foi homogeneizado a partir da solução aqüosa de fósforo de cálcio hibrido. Um sistema de polymerização in situ baseado no acrilamida foi obtido, conforme descrito por um dos autores (Oriá A. P.) (Oriá et al., 2006).

O cimento resultante da homogeneização foi adicionado a moldes de silicone de 12mm diâmetro. Duas horas depois, as esferas foram removidas dos moldes e perfuradas com três orifícios de 1,2mm diâmetro, usando um perforador fornecido com um burador. Esses orifícios atravessaram o implante formando seis canais com uma intersecção central. Os implantes foram pesados e as superfícies externas foram avaliadas. Adicionalmente, tentou-se quebrá-los entre os dedos polegar e dedo da mão (o teste do pegado), e a facilidade com que eles seriam penetrados com uma agulha de 25x7 foi asseverada (Jordan et al., 2000). Após fragmentação, a superfície interna foi avaliada. Para a avaliação dos implantes externos e internos com microscópio eletrônico, os fragmentos foram fixados em cilíndricos de 10 x 10mm (diâmetro x altura) metalizados com o auxílio de fita adesiva. Os amostras foram colocadas em um metilizador (DESK II, DentonVacuum, USA) para cobertura com uma camada fina de ouro (35-nm). Para determinação da porosidade, micrografias foram tomadas com um microscópio eletrônico (JSM: 5410, JEOL, Japão); essas foram obtidas a 15 kV com 50, 750 e 1500 x magnificação. O barra de mensuração foi
photographed simultaneously and was 500, 10 and 10µm, respectively. A compass was used to measure and convert the size of the pores and crystals (Jordan et al., 2000; Oriá et al., 2006).

The implants were packaged individually and sterilized by autoclave at 132°C for 20 minutes at 2.5kg/cm² for use in the animals’ orbits. To this end, 12 New Zealand rabbits (*Oryctolagus cuniculus*), of both sexes, weighing between 2.5 and 3.4kg, obtained from a rabbit breeding center (Federal University of Recôncavo of Bahia) were used. All the surgical procedures were conducted under isoflurane (Isoflurane, Cristália – Produtos Químicos e Farmacêuticos Ltda., Brazil) general anesthesia. Each animal’s left eye was enucleated. The implant was placed in the space formerly occupied by the bulb and fixed by suturing the remnants of the conjunctiva and extraocular muscles with the use of a simple interrupted suture pattern followed by intradermal suture with polyglactin 910 4-0 (Vicryl, Ethicon, USA). Surgeries were performed by the same surgeon.

Immediately after surgery the rabbits received ketoprofen (Ketofen, Meryal Saúde Animal, Brazil) at a dose of 1mg/kg, subcutaneously, and then at regular 24-hour intervals for the first 3 postoperative days. To provide postoperative comfort to the animals, 0.05mg/kg buprenorphine hydrochloride (Tengesic, Schering-Plough, Holanda) was administered subcutaneously at regular 6-hour intervals for the first 5 postoperative days. The surgical surface was cleaned daily with 0.9% saline at 24-hour intervals for 15 consecutive days. Clinical evaluation was performed daily for the first 15 postoperative days and then at 15-day intervals until the end of the experimental period always by the same professional.

After euthanizing with an overdose of barbiturates 3 animals were exenterated at 15, 45, 90 and 180 days performed by the same surgeon. The material was immersed in a 10% formalin solution. For the histo-pathological processing, the tissue cover was separated, and after macroscopic evaluation, included in paraffin using routine techniques. Paramedial sagittal 3 to 4µm thick sections were taken and stained with hematoxylin and eosin (HE).

RESULTS

The mean weight of the alpha-TCP-i spheres was 0.91g. The implants were solid, smooth and compact, with scattered pores between which there was no communication. Six channels were visible on the external surface (Figure 1A). The central intersection could be observed internally (Figure 1B). The pinch test was negative, and it was not possible to penetrate the implant with a 25 x 7 needle. The microarchitecture was characterized by the presence of hexagonal crystals measuring from 1.3 to 5.5µm and micropores between 0.5 and 5.6µm (Figure 2).
None of the animals were systemic and no local complications observed, related to the implants or not. The implants were removed with difficulty from the tissue covering which surrounded them, due to the infiltration of fibrovascular tissue through the interconnecting channels (Figure 3A and 3B). On the surface of the tissue covering in contact with the implant, fibrovascular projections were observed, associated with the intense mixed diffuse inflammatory infiltrate, predominantly lymphohistiocytic, accompanied by foreign-body giant cells at 15 days (Figure 3C). At 45 days one can observe the presence of granulation tissue beyond those found at 15 days, however, with moderate inflammatory intensity. At 90 days, one can observe focal lymphoplasmacytic infiltrate, associated with eosinophiles and mild edema, congestion, foci of hemorrhage, and focal hypertrophy of secretory cells was noted. Congestion of vascular structures on the slide itself and the absence of inflammatory reaction were observed at 180 days (Figure 3D).

DISCUSSION

With the exception of the conical synthetic hydroxyapatite implants (Kundu et al., 2005), which were perforated to permit the suturing of the extra-ocular muscles, there are no references in the literature on the use of implants in the form of spheres in the orbital cavity provided with large channels for interconnection, with the objective of permitting the infiltration of fibrovascular tissue, with exception of the recent study using perforated acrylic orbital implants in eviscerated rabbits (Oriá et al., 2006), behaved in an inert and non-integrable manner. The integrable implant provides adequate ocular motility and later coupling of the prosthesis. The tissues’ integration with the ophthalmic implant depends on factors such as the biomaterial used and its physical, chemical and biological features (Jordan et al., 2002), size and quantity of pores, type of material used to wrap the implant and the reaction of the host tissue (Rubin et al., 1994).

Due to the infiltration of the fibrovascular tissue in the sphere, ascertained in this study, the implant can be characterized as integrable.

The majority of implants reported, such as the Bio-Eye, the FCl₃, the Alumina and the Molteno M-Sphere have multiple interlinked pores, which permit the integration of fibrovascular tissue from the host, which reduces the risk of extrusion (Jordan et al., 2000; Jordan et al., 2002). This fact was not noted in the present study, as the electron microscope scan of the sphere revealed only surface micropores of 0.5 to 5.6µm, which did not interconnect. Tissue infiltration can be observed in micropores bigger than 5µm, as observed in the evaluation of the national hydroxyapatite, which permitted the migration of fibrovascular tissue to the interior of the sphere in micropores of 5-10 µm (Jordan et al., 2000). It was observed that even in the absence of interlinked pores, the presence of channels for interconnection made the infiltration of host tissue possible, which contributed to the absence of complications reported by other studies, such as ocular discharge, pain, exposure, infection, dehiscence of the sutures and extrusion (Molteno et al., 1973; Toft et al., 2010; Kanamura et al., 2012).

The double setting alpha-tricalcium phosphate bone cement used as an ocular implant in eviscerated rabbits (Oriá et al., 2006), behaved in an inert and non-integrable manner. The integrable implant provides adequate ocular motility and later coupling of the prosthesis. The tissues’ integration with the ophthalmic implant depends on factors such as the biomaterial used and its physical, chemical and biological features (Jordan et al., 2002), size and quantity of pores, type of material used to wrap the implant and the reaction of the host tissue (Rubin et al., 1994).

Due to the infiltration of the fibrovascular tissue in the sphere, ascertained in this study, the implant can be characterized as integrable.
Mixed inflammation with accumulation of lymphocytes, histiocytes and granulocytes after more than six months since the placing of the implant was verified in human patients who received implants of hydroxyapatite and porous polyethylene (Toft et al., 2010). In this work, an intense mixed inflammatory infiltrate was only observed in the initial periods (15 days), with a gradual reduction in the inflammatory response, which was absent at 180 days, which is alike to the histopathological findings of the bioglass and bioceramic cones used in rabbits submitted to evisceration (Brandão et al., 2012).

Due to the lack of the ideal implant, considered biocompatible, durable and that allows adequate tissue integration, adaptation of the peg system and good prosthetic mobility, new researches are justified in pursuing this implant. The alpha-TCP-i is easy to manufacture, resistant, has simple handling, presents a low cost when compared to other biomaterials, and the way it was designed allowed tissue infiltration.

CONCLUSION

It should be emphasized that further studies are required in order to adapt the peg system and ocular prosthesis for prosthetic mobility evaluation. Thus the implant of double-setting alpha-tricalcium phosphate bone cement with interconnecting channels could be a feasible option for humans but can already be used for veterinarian patients to replace the volume lost after enucleation and exenteration procedures.
ACKNOWLEDGEMENTS

The authors acknowledge FAPESB (5881-2009) for financial support

REFERENCES

