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ABSTRACT 
 

Length growth as a function of time has a non-linear relationship, so nonlinear equations are recommended 

to represent this kind of curve. We used six nonlinear models to calculate the length gain of rainbow trout 

(Oncorhynchus mykiss) during the final grow-out phase of 98 days under three different feed types in 

triplicate groups. We fitted the von Bertalanffy, Gompertz, Logistic, Brody, Power Function, and 

Exponential equations to individual length-at-age data of 900 fish. Equations were fitted to the data based 

on the least square method using the Marquardt iterative algorithm. Accuracy of the fitted models was 

evaluated using a model performance metrics combining mean squared residuals (MSR), mean absolute 

error (MAE) and Akaike's Information Criterion corrected for small sample sizes (AICc). All models 

converged in all cases tested. Evaluation criteria for the Logistic model indicated the best overall fit (0.67 

of combined metric MSR, MAE and AICc) under all different feeding types, followed by the Exponential 

model (0.185), and the von Bertalanffy and Brody model (0.074, respectively). Additionally, ∆AICc results 

identify the Logistic and Gompertz models as being substantially supported by the data in 100% of cases. 

The logistic model can be suggested for length growth prediction in aquaculture of rainbow trout. 
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RESUMO 
 

O crescimento em comprimento em função do tempo tem uma relação não linear; por isso, funções não 

lineares são recomendáveis para descrever essa relação. Seis modelos não lineares foram usados para 

calcular o ganho em comprimento de truta-arco-íris (Oncorhynchus mykiss) durante 98 dias, na fase final 

da engorda, submetidas a três dietas diferentes em grupos triplicados. Foram ajustadas as equações de 

von Bertalanffy, Gompertz, logístico, Brody, função potencial e exponencial a dados individuais de 

comprimento-idade de 900 peixes. O ajuste foi feito pelo método dos mínimos quadrados, usando-se o 

algoritmo iterativo de Marquardt. A precisão do ajuste foi avaliada pelo uso de critérios combinados de 

ajuste: quadrado médio do resíduo (QMR), erro médio absoluto (EMA) e o critério de informação de 

Akaike corrigido para tamanhos amostrais pequenos (AICc). Todos os modelos atingiram a convergência 

para cada caso avaliado. Os critérios de avaliação do modelo logístico indicaram o melhor ajuste geral 

(0,67 vez dos critérios combinados MSR, MAE e AICc) para cada grupo de peixe avaliado, seguido pelo 

modelo exponencial (0,185) e os modelos von Bertalanffy e Brody, com 0,074, respectivamente. 

Similarmente, os resultados de ΔAICc identificaram-se ao modelo logístico e ao de Gompertz, com grande 

suporte das informações em 100% dos casos. Por fim, o modelo logístico pode ser sugerido na predição 

do crescimento em comprimento de truta-arco-íris cultivada.  
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INTRODUCTION 

 

Mathematical modeling is defined as the use of 

equations to describe or simulate processes in a 

system, such as animal growth (Santos, 2008). 

Mostly, growth is described as an increase in body 

dimension (mass, volume or length) as a function 

of time, and when this relationship is plotted, it 

results in a growth curve.  

 

Length increase in fish has been studied for a long 

time in population and fisheries research. In 

contrast, aquaculture studies mostly refer to body 

weight. Because both measurement (weight and 

length) are understood to be largely caused by the 

same genes (Gunnes and Gjedrem, 1981) weight 

and length are closely linked by mathematical 

relationships. Accordingly, length, just as weight, 

can be affected by the environmental factors 

present in aquaculture facilities, i.e. tank design 

(Ross et al., 1995; Üstündağ and Rad, 2014) water 

quality and stocking density (Person et al., 2008). 

 

Therefore, length growth and other size related 

treatment studies in cultured fish have received 

increasing attention since they can be used in the 

management of aquaculture production (Furuya et 

al., 2014; Silva et al., 2015; Lugert et al., 2017). 

In fact, during the last decade the interest to record 

these growth measurements in situ has grown, in 

order to improve the automatization of rearing 

practices in commercial fish aquaculture with the 

goal to advance in terms of productivity and 

profitability (Miranda et al., 2017; Saberioon and 

Císař, 2018). 

 

Predicting growth in aquaculture facilities with 

high accuracy is possible using statistically based 

models, i.e. nonlinear equations, since statistical 

processing software are capable of handling 

complex mathematical algorithms in order to 

achieve analytical solutions (Lugert et al., 2016; 

Powel et al., 2019). Thus, the aim of this work was 

to fit six nonlinear models to length growth data 

of cultured rainbow trout by nonlinear regression 

and evaluate which model or models have the 

highest accuracy to display the growth curve. 

 

MATERIAL AND METHODS 

 

The data were collected at a commercial rainbow 

trout farm. The farm is located in the municipality 

of Nova Friburgo, a mountain region of the state 

of Rio de Janeiro, Brazil (22 ° 23'36 "S, 42 ° 

29'12" W, 1.032 m altitude). This research was 

approved by the Ethics Committee on Animal Use 

(CEUA) of the Rio de Janeiro State Fisheries 

Foundation-FIPERJ with document number 

007/2017007/2017. 

 

The fish, without sex distinction, were acquired 

from the farms’ own breeding program. Nine 

hundred fish with an age of 273 days post-hatch 

(dph), and length (fork length) mean of 22.42 ± 

0.71cm, were selected. Fish were distributed 

randomly into nine masonry tanks with a volume 

of 40 m3 each. Fish were fed with three different 

types of extruded pellets (two commercials diets, 

A and B, and one experimental diet, C) in 

triplicates [(A/1, A/2, A/3) (B/1, B/2, B/3) (C/1, 

C/2, C/3)]. Rations were offered twice a day until 

apparent saturation. The experimental period was 

98 days. Length measures at the beginning and the 

end of the trial for each feed type are shown in 

Table 1. 

 

The six nonlinear equations chosen were von 

Bertalanffy, Brody, Gompertz, Logistic, 

Exponential, and Power Function; the 

mathematical expression of each function is 

presented in Table 2. Models were fitted using the 

Levenverg-Marquardt algorithm through the 

nlsLM computational process in the statistical 

software R (Elzhov et al., 2015). This process 

uses the nonlinear least squares (nls) method. The 

default convergence conditions were used with 

the exception of the maximum number of 

iterations being increased to 1000. 
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Table 1. Average length (AL) of cultured rainbow trout in centimeters with Standard Deviation (SD) at the 

beginning and the end of grow-out phase 
Diet/Repetition AL (cm) ± SD 

Beginning  

All repetitions 22,42 ± 0,71cm 
Final  

A/1 32.31 ± 1.62 

A/2 29.80 ± 1.88 
A/3 32.06 ± 1.45 

B/1 33.09 ± 1.41 

B/2 33.00 ± 1.66 
B/3 33.42 ± 1.69 

C/1 33.07 ± 1.78 
C/2 33.45 ± 1.72 

C/3 33.01 ± 1.84 

 

Table 2. Mathematical expression of the seven equations fitted to length growth data of cultured rainbow 

trout 
Models Equation References 

Bertalanffy 𝑌 =  𝐴 ∗ (1 –  𝑒𝑥𝑝 (−𝐵 ∗  (𝑡 − 𝑇0)) Bertalanffy, 1934 

Brody 𝑌 =  𝐴 ∗ (1 –  𝐶 ∗  𝑒𝑥𝑝 (−𝐵 ∗ 𝑡)) Brody, 1945 

Logistic 𝑌 =  𝐴 ∗ (1 +  𝑒𝑥𝑝 (−𝐵 ∗ (𝑡 − 𝑇)))-1 Pearl, 1930 

Gompertz 𝑌 =  𝐴 ∗ 𝑒𝑥𝑝 (−𝑒𝑥𝑝 (−𝐵 ∗ (𝑡 − 𝑇))) Tjorve and TJorve, 2017 

Exponential 𝑌 =  𝐿0 ∗ 𝑒𝑥𝑝(𝑡 ∗ 𝑘) Santos et al., 2008 

Power Function 𝑌 =  𝐿0 ∗ (𝑡 k) Huxley, 1932 

Y = dependent variable; t = independent variable; A = asymptote; B = exponential rate of approximation to the asymptote; T = the 

location of the point of inflection (POI); C = an integration constant without biological interpretation; T0 = is the intercept on the x-

axis; Y1 and Y2 = first and the last recorded length data, respectively; T1 and T2 = age of fish at the beginning and the final of period 
experiment, respectively; L0 = is the intercept on the y-axis; and k = exponential rate to infinity. 

 

The accuracy of the fitted models was evaluated 

using a model performance metrics. The 

performance criteria to evaluate the goodness of 

fit are: The mean squared residuals (𝑀𝑆𝑅 =
 𝑅𝑆𝑆 ∗  [𝑛 −  𝑝] -1); where RSS is the residual 

sum of squares, n is the number of observations, p 

is the number of parameters of the model 

(Rawlings et al., 1998). The Akaike Information 

Criterion (AIC) corrected for small sample sizes 

(AICc). 𝐴𝐼𝐶 = 2𝑘 − 2 ln(�̂�); where k is the 

number of estimated parameters in the model and 

L̂ is the maximum value of the likelihood function 

for the model, and ln is the natural logarithm 

(Akaike, 1973). 𝐴𝐼𝐶𝑐 = AIC +
2k2+2𝑘

n−k−1
; where n is 

the sample size and k is the number of parameters. 

 

We calculated the difference in AICc (∆AICc) 

values to test the support of inferior models by the 

data. ∆AICc is calculated as: AICc (AICc i – AICc 

min) (Katsanevakis and Maravelias, 2008). Models 

with ∆AICc >10 have no support from the data, 

while models with ∆AICc < 2 have substantial 

support (Burnham and Anderson, 2002). Models 

with ∆AICc between 4-7 are somewhat supported 

by the data and might be taken into consideration. 

The Mean Absolute Error (MAE) is the average 

absolute difference between observed and 

predicted outcomes and is calculated as: 𝑀𝐴𝐸 =
𝑚𝑒𝑎𝑛(|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|). The MSR, 

AICc, and MAE were calculated using SAS 

(Statistical…, 2013). Finally, the results from 

MSR, AICc, and MAE were analyzed using a 

scoring system in which each best fit accounted 

for one score. The model that had the best fit in 

most tested cases achieved the highest score. In 

addition, we interpreted the estimated regression 

parameters of each model in regard to the 

biological attributes of the species whenever 

possible.  

 

RESULTS 

 

All models met convergence in all (9 of 9 

evaluations) tested cases through Levenverg-

Marquardt´s iterative method. All models needed 

a comparably low number of iterations, and 

convergence was generally met within 100 

iterations. The estimated parameters for each 

model are shown in Table 3. 
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Table 3. Estimated parameters of Bertalanffy, Brody, Logistic, Gompertz, Exponential and Power function 
Diet/Repetition Bertalanffy Brody Logistic Gompertz Exponential Power Function 

A/1     --- --- 

A 680.637 350.691 353.047 10740.9 --- --- 
B 0.0001 0.0003 0.0040 0.0006 --- --- 

T0 59.533 --- --- --- --- --- 

T --- --- 930.653 3156.32 --- --- 
C --- 1.0205 --- --- --- --- 

L0 --- --- --- --- 7.9986 0.02517 

K --- --- --- --- 0.0038 1.2097 
       

A/2       

A 630.258 422.841 925.313 30423 --- --- 
B 0.0001 0.0002 0.0030 0.0004 --- --- 

T0 -14.539 --- --- --- --- --- 

T ---  1491.86 5010.23 --- --- 
C --- 0.9979 --- --- --- --- 

L0 --- --- --- --- 9.8555 0.1116 

K --- --- --- --- 0.0029 0.9421 
       

A/3       

A 127.134 127.133 48.1825 59.0688 --- --- 
B 0.001 0.001 0.0086 0.0048 --- --- 

T0 81.7453 --- --- --- --- --- 

T --- --- 290.004 267.306 --- --- 
C --- 1.086 --- --- --- --- 

L0 --- --- --- --- 8.1859 0.0279 

K --- --- --- --- 0.0037 1.1919 
       

B/1       

A 47.6917 47.6918 39.627 42.2835 --- --- 
B 0.0058 0.0058 0.0144 0.0101 --- --- 

T0 164.443 --- ---  --- --- 

T --- --- 255.23 228.48 --- --- 
C --- 2.6016 --- --- --- --- 

L0 --- --- --- --- 7.633 0.0159 

K --- --- --- --- 0.004 1.2946 
       

B/2       

A 88.5135 88.5139 46.3962 54.5543 --- --- 

B 0.0018 0.0018 0.0101 0.0059 --- --- 

T0 113.95 --- --- --- --- --- 
T --- --- 280.435 254.149 --- --- 

C --- 1.23147 --- --- --- --- 

L0 --- --- --- --- 7.59 0.0165 
K --- --- --- --- 0.004 1.2868 

       

B/3       
A 60.645 60.6451 43.0691 47.8483 --- --- 

B 0.0036 0.0036 0.0124 0.0079 --- --- 

T0 145.668 --- --- --- --- --- 
T ---  266.573 238.481 --- --- 

C --- 1.694 --- --- --- --- 

L0 --- --- --- --- 7.3661 0.0127 
K --- --- --- --- 0.0041 1.3341 

 

Parameter A, values range between 39.63 and 

10740.9. Within each group, the lowest value was 

mostly obtained by the Logistic and Gompertz 

models, while the highest value was usually 

estimated by the Bertalanffy and Brody models. 

In contrast, values in parameter B range between 

0.00144 and 0.0001 with the lowest values being 

obtained by the Brody and Bertalanffy models, 

and the highest values by the Logistic and 

Gompertz models. Parameter T ranges between 

5010.23 and 228.48 in the Gompertz model, and 

between 1491.86 and 255.23 in the Logistic 

model. Parameter T0 for the von Bertalanffy 

model has values between -14.539 to 164.443. 
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Table 3 (continue). Estimated parameters of Bertalanffy, Brody, Logistic, Gompertz, Exponential, and 

Power Function models 
Diet/Repetition Bertalanffy Brody Logistic Gompertz Exponential Power Function 

       

C/1       
A 75.084 75.084 45.5924 52.3174 --- --- 

B 0.0023 0.0023 0.0103 0.0063 --- --- 

T0 119.958 --- --- --- --- --- 
T --- --- 275.762 246.341 --- --- 

C --- 1.3212 --- --- --- --- 

L0 --- --- --- --- 7.7727 0.0186 
K --- --- --- --- 0.0039 1.2663 

       
C/2       

A 309.924 244.385 52.7605 68.3329 --- --- 

B 0.0004 0.0005 0.0088 0.0046 --- --- 
T0 89.1451 --- --- --- --- --- 

T --- --- 308.098 297.346 --- --- 

C --- 1.05 --- --- --- --- 
L0 --- --- --- --- 7.3111 0.0131 

K --- --- --- --- 0.0041 1.3263 

       
C/3       

A 80.0456 80.0459 45.4537 52.7584 --- --- 

B 0.0021 0.0021 0.0105 0.0063 --- --- 
T0 120.185 --- --- --- --- --- 

T --- --- 276.587 249.388 --- --- 

C --- 1.2927 --- --- --- --- 
L0 --- --- --- --- 7.5515 0.0159 

K --- --- --- --- 0.004 1.2929 

 

L0 values are between 7.31 and 9.85 for the 

Exponential model, and between 0.0127 and 

0.0279 for the Power Function Model. Similarly, 

k values are between 0.0029 and 0.0041 for the 

Exponential model, and between 1.3341 and 

1.3341 for the Power Function Model. k values are 

between 0.004 to 0.041 for the Exponential 

model, and between 0.9421 to 1.3341 for the 

Power Function model. Graphic growth 

simulations for dph (days post hatch) 100 to 600 

by each equation are shown in Figure 1 for three-

parameter functions (Logistic, von Bertalanffy, 

Gompertz and Brody models) and, two-parameter 

functions (Power Function and Exponential 

models). 

 

The model performance metrics for each model 

are presented in Table 4. Lowest MSR-values are 

produced by the Logistic model in 0.67 of tested 

cases, followed by the Von Bertalanffy (0.11), 

Brody (0.11), Exponential (0.11) and Power 

Function (0.11) models. The Gompertz model did 

not perform the lowest MSR in any case. MAE is 

lowest in the Logistic model in 5 out of 9 tested 

groups, 0.55 respectively. The Gompertz, 

Exponential and Power function models produced 

lowest MAE once (0.11) (Table 4). 

The AICc values of each model and all tested 

cases are listed in Table 4. Lowest AICc values 

are most often obtained by the Logistic model (6 

of 9 cases). The Exponential model produced 

lowest AICc in 2 out of 9 cases, and the von 

Bertalanffy and Brody model both achieved 

lowest AICc values in 1 of 9 cases. The Gompertz 

and Power Function models never achieve lowest 

AICc. 

 

The overall score obtained by the models are 

presented at the bottom of Table 4. Undisputedly, 

the Logistic model achieved the best overall-

scoring with 18 of 27 best fits (0.67). The 

Exponential model achieved best overall fit in 5 

of 27 cases. The von Bertalanffy, and the Brody 

models scored only 2 out of 27 (0.07), and the 

Gompertz, and Power Function models achieved 

best fit just in one tested case and criteria (0.04). 

∆AICc values range between 0.026 as the lowest 

and 44.61 as the highest. The Logistic and 

Gompertz models had substantial support by the 

data in all cases (Table 4). The von Bertalanffy 

and Brody models in 6 cases and, the Exponential 

and Power Function models in 2 cases each. 
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Figure 1. Growth simulations of rainbow trout from 100 until 600 age-days obtained by Logistic (solid 

line), von Bertalanffy (dotted), Gompertz (dot dash), Brody (long dash), Exponential (two dash) and Power 

function (dashed) models. Average length in cm (○) ± Standard Deviation.  
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Table 4. Goodness of fit criteria of the von Bertalanffy, Brody, Logistic, Gompterz, Exponential and Power 

Function equations fitted to length gain data of rainbow trout. Mean Square Residual (MSR), Mean 

Absolute Error (MAE) and Akaike Information Criterion corrected for small sample sizes (AICc). ∆AICc 

values indicate support of the model by the data. *best value on same criteria. **number of times that the 

best score for each model is met 
Diet    

Criteria 
Bertalanffy Brody Logistic Gompertz Exponential Power 

Function 

A/1       

MSR 1.2147166 1.217811 1.1796001 1.1801987 1.1737527* 1.194842 
MAE 0.8236849 0.824574 0.8183127 0.8180777* 0.8188233 0.820356 

AICc 598.4779364 598.979191 592.6988709 592.7988288 592.6727535* 596.180959 

∆AICc 5,805 6,306 0,026 0,126 0,000 3,508 
A/2       

MSR 2.12683 2.128863 2.046860 2.055098 2.034366* 2.117822 

MAE 1.11847 1.119290 1.094625 1.097862 1.093890* 1.118859 
AICc 701.63786 701.824204 694.164381 694.947650 693.922849* 701.762634 

∆AICc 7,715 7,901 0,242 1,025 0,000 7,840 

A/3       
MSR 1.4333163 1.4333163 1.4308570* 1.432026 1.4826628 1.4324416 

MAE 0.9358926 0.9358926 0.9349358* 0.935386 0.9506103 0.9365388 

AICc 631.0775059 631.0775059 630.7392007* 630.900026 638.6985844 631.9101009 
∆AICc 0,338 0,338 0,000 0,161 7,959 1,171 

B/1       

MSR 1.2999818 1.2999818 1.2862617* 1.2928879 1.6090242 1.4409779 
MAE 0.9030997 0.9030996 0.8998888* 0.9015261 0.9885733 0.9384269 

AICc 605.6428412 605.6428412 603.5738641* 604.5758229 648.1843622 626.6747177 

∆AICc 2,069 2,069 0,000 1,002 44,610 23,101 
B/2       

MSR 1.3745884 1.3745884 1.3689902* 1.3716829 1.4727694 1.3902388 

MAE 0.8820453 0.8820452 0.8791945* 0.8804776 0.9140912 0.8842226 
AICc 619.6801683 619.6801683 618.8803047* 619.2654429 634.1548813 622.8517529 

∆AICc 0,800 0,800 0,000 0,385 15,275 3,971 

B/3       
MSR 2.144757 2.144757 2.127780* 2.136353 2.350096 2.210897 

MAE 1.022760 1.022760 1.021003* 1.021942 1.084951 1.038324 

AICc 703.274695 703.274695 701.724975* 702.509058 722.055856 710.149607 
∆AICc 1,550 1,550 0,000 0,784 20,331 8,425 

C/1       

MSR 1.5411509* 1.5411509* 1.5423322 1.5416740 1.6465393 1.5620830 

MAE 0.9567037 0.9567037 0.9565924* 0.9566168 0.9970732 0.9699101 

AICc 642.0976960* 642.0976960* 642.2478726 642.1642159 656.0149855 645.6945052 
∆AICc 0,000 0,000 0,150 0,067 13,917 3,597 

C/2       

MSR 1.3967752 1.3968260 1.3949278* 1.3957112 1.4559129 1.395989 
MAE 0.9172188 0.9175387 0.9158973 0.9165441 0.9292423 0.915059* 

AICc 622.8184881 622.8256100 622.5590881* 622.6691286 631.8986434 623.660770 

∆AICc 0,259 0,267 0,000 0,110 9,340 1,102 
C/3       

MSR 1.807639 1.807639 1.799842* 1.803624 1.918966 1.827667 

MAE 1.012463 1.012463 1.009982* 1.011283 1.032893 1.013757 
AICc 676.787560 676.787560 675.935976* 676.349501 689.514099 679.911158 

∆AICc 0,852 0,852 0,000 0,414 13,578 3,975 

       
Score** 2 2 18 1 5 1 

 

DISCUSSION 

 

Convergence is met when the iterative process 

successfully estimates parameters for the function 

within the given maximum number of iterations 

set in the fitting algorithm. In this study, all 

models met convergence in all tested cases using 

the Marquardt algorithm. This algorithm is 

described to be more robust than others offered on 

statistical software (Elzhov, et al., 2015; Lugert et 

al., 2017). This is especially important, as non-

convergence situations of models for aquaculture 

data are described by several authors (Costa et al., 

2009; Mansano et al., 2012; Allaman et al., 2013; 

Sousa et al., 2014). 
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Parameter A for three-parameter models (von 

Bertalanffy, Brody, Logistic and Gompertz) 

describe the infinite size of an organism and can 

be interpreted as the possibility of the model to 

reflect the biological properties of the species. O. 

mykiss is known to exceed 120cm in length (Eaton 

et al., 1995). Accordingly, Logistic and Gompertz 

models, estimated A within the biological range of 

the species in 7 of 9 cases, and for von Bertalanffy 

and Brody models in 5 of 9 cases.  

 

Parameter B for three-parameter models denotes 

the precocity index. This means the larger the 

numeric value, the quicker the fish will reach the 

asymptotic or infinite size (Malhado et al., 2009). 

Estimated B values for Logistic and Gompertz 

models (0.0001 and 0.0144) in this study have the 

tendency to be greater than those being obtained 

from wild rainbow trout (0.002 to 0.049) in 7 and 

6 of 9 cases, respectively (Blair et al., 2013; Sloat 

and Reeves, 2014; Cilbiz and Yalim, 2017). 

Similarly, Lugert et al. (2016) found similar 

differences in parameter B between cultured and 

wild Scophthalmus maximus, referring these 

differences to the positive effect of controlled 

environmental conditions in recirculating 

aquaculture systems (RAS). There are no 

differences in parameter B observed between von 

Bertalanffy and Brody models, having values 

between 0.001 and 0.058. The Logistic model had 

the highest values of B followed by the Gompertz 

model. Von Bertalanffy and Brody models 

generally have the lowest values. Contrary to our 

findings, Gomiero et al. (2009) showed larger B 

estimates for Brody and von Bertalanffy models 

on length growth of cultured Brycon orbignyanus. 

Our results agree with results by Santos et al. 

(2013) on length growth modeling of 

Oreochromis niloticus. 

 

The point of inflection (POI) (parameter T) of the 

growth curve is only parameterized in the 

Gompertz and the Logistic model. At the POI, the 

rate of grow this largest, before diminishing 

asymptotically against zero. In this study, T values 

obtained by the Gompertz and Logistic models are 

generally lower than those estimated by Sloat and 

Reeves (2014) in weight data of wild rainbow 

trout using the Gompertz model. Furthermore, in 

aquaculture operations, the parameter T can be 

useful in the empiric adjustment of management 

strategies, as it is proven to correlate with other 

husbandry information. For instance, T parameter 

has significant meaning on cultured Carassius 

auratus gibelio because it positively correlates 

with dietary protein levels (Yun et al., 2015). 

Likewise, Oreochromis niloticus shows 

significant influence of water temperature on 

weight gain and at the age at the inflexion point 

(Santos et al., 2013).  

 

Parameter T0 for the von Bertalanffy model 

defines the hatching day of rainbow trout. In this 

study, this parameter does not have congruence 

with biological features since it is not possible to 

have negative or positive hatching age (up to 54 

days). Similarly, parameter L0 for Exponential 

and Power Function models which define the 

hatching length differ between both models. In 

addition, L0 of the Power function model shows 

values (0.0127 to 0.1116cm) smaller than the 

biologic features of rainbow trout (1.2 to 2cm) as 

described by Lavens and Sorgeloos (1996). 

 

Parameter k represents the constant growth rate of 

rainbow trout trough all growth-curve for 

Exponential and Power Function model. k values 

of Exponential model are lower than those 

obtained by the Power Function. These values 

must be taken with care since both models display 

exponential shape and are not intended for longer 

growth periods or extrapolation of data. However, 

because of their simplicity they are frequently 

used in aquaculture studies (Santos et al., 2008; 

Costa et al., 2009).  

 

In model selection, the goodness of fit should 

generally not be based on a single criterion. 

Correspondingly, it has become common practice 

to evaluate the most suitable model based on an 

evaluation metrics of mostly three statistical 

parameters of different properties (e.g. Yun et al., 

2015; Lugert et al., 2017; Powell et al., 2019). 

One parameter should be based on the residuals 

from fitting the model. The second parameter is 

often based on information theory either AIC, 

AICc or BIC. A third parameter is mostly 

somehow based on the deviation between 

estimated and sampled data. For these three 

categories of evaluation parameters, several 

different statistical parameters are available. In 

each scenario, the author needs to decide 

individually, which parameter is most suitable for 

the current study.  

 

In our study, we used Mean Squared Residual 

(MSR), Akaike Information Criterion for small 

sample sizes (AICc) and Mean Absolute Error 
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(MAE). The non-linear least squares method aims 

to achieve non-linear equation parameter by 

minimizing the Residual Sum of Squares (RSS). 

The smaller RSS, the smaller the MSR and the 

better the fit (Rawlings et al., 1998). In this study, 

the Logistic model most often achieved the 

smallest MSR values. Similar results were 

obtained by Costa et al. (2009) in growth studies 

of Orechormis niloticus, but are in contrast to 

Mansano et al. (2012) on Lithobates 

catesbeianus, with both species being reared 

under aquaculture conditions.  

 

We used ∆AICc to identify whether our datasets 

were supported by more than one model. This was 

necessary, as the outcome from the analysis 

revealed very close numeric results between 

different models within tested groups. ∆AICc < 2 

indicates substantial support of a model by the 

data (Burnham and Anderson, 2002). Indeed, in 

all 9 analysis, 2 out of 6 tested models were 

supported by the data, namely Logistic and 

Gompertz. This might be due to the specific 

pattern of our recorded data (grow-out phase), 

which are distributed around the POI of the 

growth curve. Accordingly, several models of 

sigmoidal behavior can equally well reflect this 

segment of the curve. 

 

Primarily, we observed that the different non-

linear models adjusted their fit individually to the 

various growth trajectories expressed by rainbow 

trout caused by different diet treatments. Araneda 

et al. (2013) observed similar results when fitting 

models on various growth data of Penaeus 

vannamei. This specific application has huge 

potential in predicting the effects of new feed 

formulations, harvest size and production period 

in all aquaculture species. However, it is 

necessary to verify and validate this potential 

through studies with rigorous control of diet 

quality and quantity as recorded in carp (Yun et 

al., 2015). 

 

CONCLUSION 

 

All six models (von Bertalanffy, Brody, Logistic, 

Gompertz, Exponential and Power Function) have 

shown the capacity to fit the length-at-age data of 

cultured rainbow trout during the grow-out phase. 

However, in the current study, the Logistic model 

achieved the highest accuracy in fit. Despite the 

growth-length curve of cultured rainbow trout not 

clearly follows a sigmoidal shape, the 

diminishing-return shaped von Bertalanffy and 

Brody models, as well as the exponential shaped 

Power Function and Exponential models do not 

meet the mathematical attributes needed to reflect 

length-at-age data. This is also verified by ∆AICc 

values, which indicate the Logistic and Gompertz 

model, as the only models having substantial 

support by the data in all cases. Furthermore, we 

showed that it is possible to model the impact of 

varies feeding strategies to predict long-term 

influences on growth and harvest size and 

production period. 
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