Penetrating keratoplasty and anterior chamber intraocular lens implant: Outcomes in aphakic and pseudophakic bullous keratopathy

Ceratoplastia penetrante e implante de lente intra-ocular de câmara anterior: pacientes portadores de ceratopatia bolhosa pseudofácica e afácica

Paulo E. C. Dantas (1)
M. Cristina Nishiwaki-Dantas (2)
Richard L. Abbott, (3)
Robert G. Webster, (4)
Wayne E. Fung. (5)

SUMMARY

Concerns on anterior chamber intraocular lens (AC IOL) implantation are often raised due to the association of complications with the old-styled closed-loop AC IOL, especially those implanted in the mid-1980's. Although those lenses are no longer marketed, there are still more than 200,000 patients with this type of lens in place in the United States. There are evidences that the new-style open-loop AC IOL may not be associated with the problems caused by closed-loop AC IOL.

We report our experience in patients with pseudophakic bullous keratopathy (PBK) and aphakic bullous keratopathy (ABK) that underwent penetrating keratoplasty (PK) associated with AC IOL exchange (pseudophakic) or secondary implantation (aphakic).

Keywords: Penetrating keratoplasty; Intraocular lens; Secondary implant; Aphakic bullous keratopathy; Pseudophakic bullous keratopathy

INTRODUCTION

Aphakic and pseudophakic bullous keratopathy accounted for nearly 40% of all keratoplasties (1) and had lead the indications for penetrating keratoplasty (PK) in the United States (1-3) in the 80's decade. Besides closed-loop anterior chamber intraocular lens (AC IOL) are no longer marketed, there are more than 200,000 patients in the United States with these lenses in place (1). To date, there are no definitive data with regards to the choice of replacement lens design and method of lens fixation. There has been some controversy over the best management of the intraocular lens implant (IOL) in these patients during PK. Generally, there are three traditional choices (5):

- retention of aphakia or of the old IOL;
- removal of the old IOL, rendering the eye aphakic;
- removal of the old IOL and exchanging it for a new IOL, or inserting a secondary implant into the aphakic eye.

Throughout the years it became clear that iris plane, closed loop AC IOLs and dislocated IOLs should be removed (5,6). Hence, in these conditions the patient should have an IOL exchange at the time of the PK. There are controversies and disagreement however in where to best place the secondary IOL implant in these eyes (without support for a posterior chamber (PC IOL), if in the anterior chamber or in the posterior chamber.

We report in this paper our experience in 25 consecutive patients submitted either to a combined PK and IOL exchange (pseudophakic) or PK and secondary IOL implantation (aphakic) using a flexible open-loop AC IOL.
MATERIAL AND METHODS

The chart of 25 patients who underwent PK for pseudophakic (8 patients=32%) or aphakic (17 patients = 68%) bullous keratopathy with IOL exchange/secondary implantation between November 1990 and September 1994 were reviewed. Exclusion criterion for AC IOL implant was the finding of peripheral anterior synechiae (PAS) more than 90° of the AC angle, previously seen by gonioscopy with a three-mirror lens or during the surgery.

Donor cornea were preserved in Optisol or K-Sol and stored at 4°C. All surgeries were done by one of the three corneal surgeons (PECD, RLA, MCND). Surgical technique consisted of PK combined with either an IOL exchange (pseudophakic patients) or secondary implantation (aphakic patients) of an open-loop AC IOL using the UV Kelman Omnifit II (IOLAB, Claremont, CA). Surgeries were performed under local or general anesthesia. Sizing of the AC IOL was determined by measuring the horizontal limbal diameter (white-to-white) with a caliper and adding 1 mm to the measure. Lid speculum was applied and no Flieringa ring was used. A 7.75 mm donor button was punched out from the endothelial side using a disposable trephine blade (Weck, USA). The recipient cornea was trephined to two-third thickness using a 7.5 mm disposable trephine blade and handle. The AC was entered by a microsharp blade (75 Beaver, USA). The host cornea was excised using right and left corneal scissors. When possible, lysis of goniosynechiae was performed with a Barraquer iris sweep or Vannas scissors. No extensive iris manipulation was done. In pseudophakic patients, all the lenses were carefully removed by cutting their haptics to easy removal of the optics and then sliding out the haptics from their iris adhesions. If bleeding was present, either irrigation with sodium hyaluronate or direct pressure with a Weck cell sponge were enough to control it. No cautery was used. Anterior vitrectomy was performed when necessary and anterior chamber was reformed with balanced salt solution (BSS). A flexible open-loop AC IOL was implanted into the AC angle through an open sky approach, positioned orthogonal to the orientation of the explanted lens and, if the surgeon was sure of its good implantation, the AC IOL and the AC angle were then coated with sodium hialuronate and the donor button was sutured into place using 16 interrupted 10-nylon sutures. At the end of the sutures, sodium hialuronate was exchanged by BSS. The knots were left on the donor side and the surgeon checked for the watertight condition of the surgical wound with the Weck cell sponges. Subconjunctival injection of steroid and antibiotic were given and the eye was patched and covered with an acrylic shield.

Table 1 displays the best corrected visual acuity pre and postoperatively. Fifteen patients (60%) were seen for a period longer than 11 months.

The patients were examined in the postoperative days 1, 7, 15, 30 and then monthly. The clinical parameters assessed included best corrected visual acuity, biomicroscopy, gonioscopy with a three-mirror lens, tonometry with TonoPen and Goldman tonometer and fundoscopy by a retina specialist (WEF). When necessary, angiofluoresceinography by ImageNet (Topcon, Japan) was done.

All types and styles of explanted IOLs were identified and recorded in the chart. Complications when present were also recorded in the chart.

RESULTS

Our series consisted of 13 females (52%) and 12 males (48%), with mean age of 74 years-old (range from 46 to 93). Seventeen patients (68%) had aphakic bullous keratopathy (ABK) and eight (32%) pseudophakic bullous keratopathy (PBK). The mean follow-up was 17 months (range from 3 to 45) postoperatively. Fifteen patients (60%) were seen for a period longer than 11 months and 10 (40%) for less than 11 months.

Table 1 displays the best corrected visual acuity pre and postoperatively. Table 2 displays the type of explanted IOL in each given case. During the follow-up period, 24 corneas (96%) remained clear. Just one patient (4%) had opaque cornea secon-
dary to allograft rejection. This patient belonged to the ABK group.

The main complications associated with ABK (17 patients) were age related macular degeneration (ARMD) (2=11.8%), cystoid macular edema (CME) (1=5.9%) and graft failure (1=5.9%). In the PBK group (8 patients), complications were CME (1=12.5%) and ARMD (1=12.5%).

No progressive sinuechiae were noted in any case.

DISCUSSION

Many concerns are raised on AC IOL implantation because of the associated complications identified with several previous and outdated AC IOL, especially the closed-loop lens style. They reflect a general distrust of AC IOL, mainly the highly publicized closed-loop AC IOL of the mid-1980’s. There are evidences that Kelman-style AC IOL may not be associated with the problems caused by old styles of closed-loop AC IOLs. They concluded that complications with closed-loop IOLs were 3 to 4 times higher than with open-loop AC IOLs, providing evidence to conclude that the flexible, one-piece, ball PMMA, open-loop AC IOL will still play a useful role in limited and selected clinical indications. The current generation of open-loop AC IOLs is technically easy to implant, inducing little or almost no iris manipulation, therefore less surgical time is required, hence less complications.

Zaidan and Goldman, in a prospective study involving 36 patients in 1990, reported 11(31%) patients with best corrected visual acuity (BCVA) of 20/40 or better, 12 (33%) with 20/50 to 20/100, 8 (22%) with 20/200 or less. In this series, 95% (38 patients) of the grafts remained clear. New glaucoma incidence was 22.5%. Main complications were CME in 16 patients (15%), ARMD in 4 (10%), graft rejection in 5(12.5%), retinal detachment in 1 (2.5%) and ARMD (1=12.5%).

Koenig and colleagues in 1990 reported 35% of the patients with 20/40 or better and 25% with 20/50 to 20/100. All grafts remained clear at the end of the study.

In the previous studies, 90 to 100% of the grafts remained clear at the latest follow-up. In our series, 96% (24 patients) of the grafts remained clear. Just one patient developed corneal opacity due to corneal graft rejection. Our study shows similar results post-operatively (see Table 3) to those previously discussed. No new or secondary glaucoma was noted, probably due to absence of progressive sinuechiae at the latest follow-up.

Table 3 compares our results to other similar previous studies.

The most common style of explanted and exchanged AC IOL was closed-loop AC IOL (see table 2). No open-loop or iris-fixation IOL was found in any case.

The main disadvantage of AC IOL is the possible deleterious effect on the corneal endothelium and the AC angle. These observations, however, were generally done at a time when most of AC IOL were closed-loop. Studies have shown that Kelman-style open-loop lenses may have the same effect on the corneal endothelium as sutured posterior chamber (PC) IOLs. Review of the literature has shown basically equivalent long-term results of PK and IOL exchange using both Kelman-style, flexible, open-loop AC IOL and, acapsular fixation of sutured posterior chamber (PC) IOL. In a large group of explanted AC IOLs, Arffath et al. concluded that complications with closed-loop IOLs were 3 to 4 times higher than with open-loop AC IOLs, providing evidence to conclude that the flexible, one-piece, ball PMMA, open-loop AC IOL will still play a useful role in limited and selected clinical indications. The current generation of open-loop AC IOLs is technically easy to implant, inducing little or almost no iris manipulation, therefore less surgical time is required, hence less complications.
Penetrating keratoplasty and anterior chamber intraocular lens implant:
Outcomes in aphakic and pseudophakic bullous keratopathy

and it is our procedure of choice to treat these very difficult cases.

RESUMO

Devido às complicações associadas às lentes intra-oculares de câmara anterior do tipo “alça fechada”, muito usada nos anos 80, o uso de lente de câmara anterior tem sofrido críticas, ora relacionadas à sua influência sobre a fisiologia do endotélio, ora relacionadas ao comprometimento do seio came- rular, levando à progressiva formação de sinéquias anteriores. Essa preocupação se deve ao grande número de artigos publicados relacionando às lentes de “alça fechada”, a chamada “epidemia de ceratopatia bolhosa” durante o início dos anos 90. Encontramos porém evidências na literatura disassocia- ciando as modernas lentes de câmara anterior de “alça aberta” de tais complicações.

Neste estudo reportamos nossa experiência com implante lentes de câmara anterior de “alça aberta” em pacientes portadores de ceratopatia bolhosa pseudofácia (explante com substituição) e afácia (implante secundário) em pacientes submetidos a concomitante transplante penetrante de córnea.

REFERENCES

Sociedade Brasileira de Laser e Cirurgia em Oftalmologia (BLOSS)
“BLOSS-NET”

Se você ainda não é membro da BLOSS-NET mande o seu correio eletrônico para o número de fax abaixo. Nós o colocaremos na rede. Ao vivo, on-line, com muitos dos melhores cirurgiões em oftalmologia do Brasil e também com a presença de vários colegas latino-americanos, norte-americanos e europeus.

Fax: (011) 573-4002 - A/C: Dr. Paulo Schor - E-mail: bloss@pobox.com