Instruments for evaluation of functionality in children with low vision: a literature review

ABSTRACT

We conducted a literature review of tools used to evaluate functionality in children with low vision with the aim of analyzing the applicability, advantages, and disadvantages for children <6 years of age, an age at which visual development is mostly complete. Publications in Portuguese, English and, Spanish describing functional evaluation tools for children aged 0-18 years with low vision in the following databases were included: Web of Science, Virtual Health Library, Cochrane, Scielo, and PubMed. A total of 181 articles were collected, 15 of which were included in this review. Thirteen tools were identified, nine of which evaluated overall functionality and quality of life through questionnaires. The other 4 instruments, using a observational test model, evaluated functionality and they were elected. Observational tests chosen for their accuracy and lower selection bias were used to evaluate visual functionality. Of these, the Functional Vision Assessment up to 6 years seems to be promising. In conclusion, we observed a lack of tools for evaluating functionality in children with low vision. This type of evaluation is necessary for planning visual rehabilitation to improve quality of life in children with low vision.

Keywords: Vision, low/rehabilitation, Disability evaluation, Vision disorders; Quality of life

INTRODUCTION

During the development of vision in children, which is typically complete approximately by 6-7 years of age, health professionals seek to identify possible problems in visual functions to plan appropriate treatment and rehabilitation. Pediatric ophthalmologists routinely assess visual acuity, pupils, ocular motility, refraction, fundoscopy, visual field, color vision, and brightness adaptation. This evaluation is often insufficient to learn how a child performs activities by using their residual vision, which has been defined by Colenbrander as functional vision. Some authors consider this to be the best definition for functional vision assessment because it makes clear the difference between the evaluations performed by therapists (functional vision) and by ophthalmologists (visual functions).

Functional vision generally reflects changes in visual functions, but this correlation is not absolute because children with the same visual acuity may present differences in functional vision that can be explained by the interference of environmental factors (e.g., domiciles, schools, and social organizations) and personal (individual particularities and lifestyles), as cited in the International Classification of Functioning, Disability and Health (ICF).

Some authors have been dedicated to the study of functional vision assessments in various age groups, including infants, and have sought to recognize patterns of normality and identify methods to detect changes in these patterns. The functional evaluation of infants is a challenge because of the non-standardization of methods, rapid evolution of abilities due to growth/development, and difficulty in correlating test results with visual acuity. With respect to pre-school children (2-6 years) and school children (7-10 years), standardized assessments for adequate intervention planning are known to be important, especially for visual functionality because of the difficulties that the disability may cause in the learning process. Nobre studied school children and observed that, in most children, vision problems were detected by teachers.

In general, impairment of various visual functions can lead to poor visual acuity. A person with low vision is defined by the World Health Organization (WHO) as having “impairment of visual functioning, even after treatment and/or correction of common refractive errors, and has a visual acuity of <20/60 (6/18, 0.3) to perceived light or a visual field of <10° from its fixation point but uses or is potentially capable of using vision for planning and performing a task.”

RESUMO

Realizada revisão bibliográfica dos instrumentos de avaliação da funcionalidade da criança com baixa visão analisando sua aplicabilidade, vantagens e desvantagens, principalmente entre crianças abaixo de 6 anos de idade, período de grande importância para a reabilitação visual. Publicações descrevendo instrumentos para avaliação funcional nas bases de dados Web of Science, Biblioteca Virtual em Saúde, Cochrane, Scielo e PubMed, em crianças (0-18 anos) com baixa visão, nos idiomas português, inglês e espanhol. Recuperaram-se 181 artigos, sendo 15 incluídos na revisão. Foram identificados 13 instrumentos, sendo nove para avaliar funcionalidade global e qualidade de vida, em modelo de questãoário. Os demais, (4 instrumentos), em modelo de testes observacionais, avaliavam funcionalidade visual e foram eleitos. Para avaliar funcionalidade visual foram utilizados testes observacionais, elementos por serem precisos e com menos viés de seleção. Destes, o AVIF-2 a 6 anos mostrou-se um instrumento promissor. Concluindo, observou-se escassez de instrumentos para avaliação funcionalidade em crianças com baixa visão. Essa avaliação é necessária para planejamento da reabilitação visual e melhora na qualidade de vida de crianças com baixa visão.

Descritores: Baixa visão/reabilitação; Avaliação da deficiência; Transtornos da visão; Qualidade de vida
For children with this condition, assessment of visual and overall functionality is the first step in visual habilitation/rehabilitation planning. Children, especially those with moderate to profound visual loss, may become dependent or have disabilities that may interfere with their quality of life if they cannot fully use their remaining vision. Functional evaluation allows individualized intervention according to the potential of each child because visual behavior is a representation of neurological development(15). Early visual intervention, performed between 0 and 6 years of age, is called visual rehabilitation and occurs in the period of the greatest and most significant changes in the child's development when visual, motor, and cognitive acquisitions occur over short time intervals(15). Visual habilitation aims to avoid or minimize delays in child development and provide a better quality of life.

Evaluation of the functionality of a child can be performed by direct methods, through performance observation, or by indirect methods (self-administered questionnaires or interviews). It should be emphasized that, in general, the concept of functionality described in the CIF encompasses all body functions, activities, and individual participation(11,12). Thus, for evaluation, the therapist must be well acquainted with the instrument that will be used, which must be appropriate to the age group and stage of development of the child. Global functionality can be assessed, including activities of basic daily life, instrumental activities (such as using a telephone), and social and leisure activities(13). The quality of life, in a generic concept, is defined as "the individual's perception of his position in life in the context of the culture and value system in which he lives and in relation to his goals, expectations, standards, and concerns"(15). In the evaluation of visual functionality, a child uses vision to interact with the environment and people, usually in the form of contextual tasks, in a structured observational process (basic visual, oculomotor, and visuoperceptive functions)(15).

There are several instruments available focused on motor functions, such as the Coordination and Motor Dexterity Assessment(14) and Gross Motor Function Measure(15), and some focused on learning areas, such as the Visual Motor Integration (VMI), which assesses VMI and learning problems(16).

Considering the scarcity of specific instruments validated for functional evaluation in children with low vision, we decided to review the scientific literature on the instruments available to evaluate the functionality in children with low vision and discuss the advantages and disadvantages of the instruments to contribute to decision making on the choice of instrument to be used by professionals for a given purpose.

METHODS

To achieve the proposed objectives, a bibliographic survey of the scientific publications on instruments to evaluate the functionality in children with low vision in the main databases in the health area was performed. Relevant information on the subject was searched in the Web of Science, Virtual Health Library, Cochran, Scielo, and Pubmed databases, which index national and international peer-reviewed journals. The formulation of the search strategies was based on the terms in Medical Subject Headings: low vision, rehabilitation, disability evaluation, vision disorders, and quality of life. The bibliographic review was performed through September 6, 2016.

Selection of the documents was based on reading of the title and summary of each article. We used the filters present in the databases with the terms "children," questionnaire," occupational therapy," and "ophthalmology" and selected only original articles. The term "baby" was not used because the authors did not aim to retrieve instruments that evaluated this audience.

To be included in the study, the articles had to contain the following: a description of the instruments (questionnaires, interviews, or observational and/or assisted tests) used to evaluate the functionality in children with low vision as understood in its generic concept or as related to some disease that commonly occurs associated with low visual acuity; evaluations of some function of the body that would impair the functionality of children with low vision; and assessments of the quality of life/impact of low vision on a day-to-day basis or on children's activities. We included all articles that met the previous criteria and whose casuistry consisted of children. To delimit this age group, we opted for the broader definition proposed by WHO(15) that considers a child as a human being <18 years old.

We excluded studies with instruments that did not evaluate the functionality of children with low vision or disease leading to this condition; functional evaluations or evaluations of the quality of life of adults with low vision; studies in which the instrument used were not described or were not present in the process of validation for the evaluation of the series. The following variables were considered: country, year of publication, age of the study population, sample size, disease associated with low vision, type of instrument used, and assessed functions (visual, overall, and quality of life). Correlations between functional evaluation results and visual acuity were also reviewed. Excel was used for the presenting of the database and descriptive statistical analysis. The study was approved by COEP-UFGM CAAE: 0540.0.203.000.11.

RESULTS

A total of 181 articles were retrieved on the basis of the descriptors and 57 were selected after reading the titles and abstracts. These articles were fully read and classified according to the inclusion and exclusion criteria. From this reading, the articles quoted in the selected papers that were not included in the initial bibliographic review were also included in the final review.

Articles were excluded for the following reasons: two articles for not mentioning any instrument for assessing the functionality of children with low vision, 35 because the instruments were used to evaluate adults/elderly, three because they did not describe the instrument used in the study, two because they evaluated structures of the eye, and one because the instrument was not a questionnaire, test, or interview but rather a focus group work with discussion and comment collection.

Data from the 15 studies surveyed are shown in table 1. They were published between 1993 and 2016, most in the last 15 years after the year 2000. Seven of the 15 studies selected were developed in Brazil. The sizes of the samples studied were quite heterogeneous and ranged from 12 to 773 children, and studies that evaluated a larger number of children(21-23,25) performed more robust statistical analyses, with application of, for example, the Rasch Model of the Response to the Item in addition to analyses of variance, covariance, and multiple comparisons. Only Katsumi et al.(23) evaluated global and visual functionality, whereas the other studies evaluated visual functionality and quality of life. Regarding the age group studied in the 15 articles selected, seven evaluated preschoolers and schoolchildren, five evaluated only preschoolers (2-6 years), and three evaluated only schoolchildren (>6 years and 11 months).

It was not possible to describe the most recurrent baseline disease among the studies because almost all of them grouped more than one disease associated with low visual acuity or adopted the generic description of low vision following WHO criteria. Lopes et al.(21) studied a cohort of children with low vision caused only by congenital cataracts and published results of the instrument Visual Functional Infant Questionnaire (VFVI) to evaluate functionality in this population. Regarding the instruments, among a total of 12 used or reapplied in the 15 studies, half were the Children Visual Function Questionnaire (CVFQ) or Portuguese version of the Visual Child Function Questionnaire (QFVI). All questionnaires required objective responses. They were addressed to parents or caregivers in the case of the LV-FV, Functional Vision Questionnaire for Children and Young Peo-
ple (FVQ-CYP) and Cardiff Visual Ability Questionnaire for Children (CVAQC). The most used questionnaire among the analyzed studies was the CVFQ, which evaluated global functionality and quality of life, with results published in the year 2000 in the USA. Rossi et al. (3) reported the results of the first three studies with FVCF, indicating that this is one of the few instruments that suitably evaluate the pre-school age group. Another relevant aspect of the test is the subdivision into two age groups: <3 years and ≥3 years. This is because the period <3 years is considered to be the gold standard for evaluation of visual habilitation when development is in the process of accelerated acquisitions. Finally, during validation of the CVFQ for use in Brazil, the authors chose to apply the questionnaire to children who presented only congenital cataracts as a cause of the visual deficit, which provided information about the functional profile of this group specifically and enabled determination of a correlation between the test results and the visual acuity variable (23). The QFVI was also used in 2012 with children undergoing visual habilitation when development is in the process of accelerated acquisitions. Finally, during validation of the CVFQ for use in Brazil, the authors chose to apply the questionnaire to children who presented only congenital cataracts as a cause of the visual deficit, which provided information about the functional profile of this group specifically and enabled determination of a correlation between the test results and the visual acuity variable (23). The QFVI was also used in 2012 with children undergoing visual habilitation when development is in the process of accelerated acquisitions. Finally, during validation of the CVFQ for use in Brazil, the authors chose to apply the questionnaire to children who presented only congenital cataracts as a cause of the visual deficit, which provided information about the functional profile of this group specifically and enabled determination of a correlation between the test results and the visual acuity variable (23). The QFVI was also used in 2012 with children undergoing visual habilitation when development is in the process of accelerated acquisitions. Finally, during validation of the CVFQ for use in Brazil, the authors chose to apply the questionnaire to children who presented only congenital cataracts as a cause of the visual deficit, which provided information about the functional profile of this group specifically and enabled determination of a correlation between the test results and the visual acuity variable (23). The QFVI was also used in 2012 with children undergoing visual habilitation when development is in the process of accelerated acquisitions. Finally, during validation of the CVFQ for use in Brazil, the authors chose to apply the questionnaire to children who presented only congenital cataracts as a cause of the visual deficit, which provided information about the functional profile of this group specifically and enabled determination of a correlation between the test results and the visual acuity variable (23). The QFVI was also used in 2012 with children undergoing visual habilitation when development is in the process of accelerated acquisitions. Finally, during validation of the CVFQ for use in Brazil, the authors chose to apply the questionnaire to children who presented only congenital cataracts as a cause of the visual deficit, which provided information about the functional profile of this group specifically and enabled determination of a correlation between the test results and the visual acuity variable (23). The QFVI was also used in 2012 with children undergoing visual habilitation when development is in the process of accelerated acquisitions. Finally, during validation of the CVFQ for use in Brazil, the authors chose to apply the questionnaire to children who presented only congenital cataracts as a cause of the visual deficit, which provided information about the functional profile of this group specifically and enabled determination of a correlation between the test results and the visual acuity variable (23). The QFVI was also used in 2012 with children undergoing visual habilitation when development is in the process of accelerated acquisitions. Finally, during validation of the CVFQ for use in Brazil, the authors chose to apply the questionnaire to children who presented only congenital cataracts as a cause of the visual deficit, which provided information about the functional profile of this group specifically and enabled determination of a correlation between the test results and the visual acuity variable (23). The QFVI was also used in 2012 with children undergoing visual habilitation when development is in the process of accelerated acquisitions. Finally, during validation of the CVFQ for use in Brazil, the authors chose to apply the questionnaire to children who presented only congenital cataracts as a cause of the visual deficit, which provided information about the functional profile of this group specifically and enabled determination of a correlation between the test results and the visual acuity variable (23).
Instruments for evaluation of functionality in children with low vision: a literature review

The present broad review of the literature without delimiting the time intervals used identified instruments used to evaluate the functionality of children with low vision in several countries. Differences were observed in the evaluations according to the studied populations, items evaluated, and the design and analysis of the studies. These differences underscored the paucity of research in pre-school age children with low vision.

The limitations of the present revision were the non-inclusion of other languages, except Portuguese and English in the bibliographic search, non-inclusion of the instruments of subjective evaluations, and non-search for materials not indexed in these bases as books and theses. However, the authors suspect that at the present revision, the most used instruments for functional vision assessment have been included in this review. The approach used to evaluate the types of functions by a specific test (global, visual, or quality of life) can facilitate the choice of a suitable instrument. A gap is observed with regard to standardized functional tests for children with low vision, although studies using the AVIF 2 to 6 years and Functional Vision Assessment have been shown to be promising. It should be highlighted that the lack of instruments for evaluation of visual functionality and its correlation to the visual acuity is a very important aspect of a functional evaluation method that should be added to the ophthalmologic examinations. The presented instruments were not addressed to groups with specific ocular diseases. Such attention would enable detection of differences in the behaviors or functional profiles of subjects by grouping them according to the causative diseases (retinopathy, toxoplasmosis, congenital cataracts, and glaucoma), in addition to other peculiarities related to the diagnosis and functional activities of children.

REFERENCES

VIII Congresso da Sociedade Brasileira de Visão Subnormal

26 e 27 de maio de 2017
Rio de Janeiro - RJ

Informações:
Site: http://www.visaosubnormal.org.br/info.php