Oxidative stress parameters in women with breast cancer undergoing neoadjuvant chemotherapy and treated with nutraceutical doses of oral glutamine

Parâmetros de estresse oxidativo em mulheres com câncer de mama submetidas à quimioterapia neoadjuvante e tratadas com doses nutracêuticas da glutamina oral

José Wilson Mourão de Farias¹, Flavia Siqueira Furtado², Sergio Botelho Guimarães³, Antônio Ribeiro da Silva Filho⁴, Paulo Roberto Leitão de Vasconcelos⁵

¹Fellow Master Degree, Department of Surgery, Postgraduate Program, UFC, Ceará, Brazil - Technical procedures, acquisition and interpretation of data. The article is part of a master degree dissertation.
²Graduate student, UFC, Ceará, Brazil - Helped with technical procedures, acquisition of data
³Ph.D, Associate Professor, Department of Surgery, Head, LABCEX. UFC, Ceará, Brazil - Manuscript writing, statistical analysis, graphics design
⁴Ph.D, Full Professor and Dean, Faculdade Christus, Fortaleza, Ceará, Brazil - Critical revision and analysis of data
⁵Ph.D, Associate Professor. Coordinator, Post-Graduation Program, Department of Surgery, UFC, Ceará, Brazil - Tutor, responsible for conception, design, intellectual and scientific content of the study, critical analysis, final approval of manuscript

ABSTRACT

PURPOSE: To evaluate the effects of oral administration of GLN on the oxidative stress in women with breast cancer undergoing neoadjuvant FAC chemotherapy (5 fluorouracil 500 mg/m²+Doxorubicin 50 mg/m²+Cyclophosphamide 500 mg/m² body surface area).

METHODS: Twenty women (mean age: 51.7 years) with breast ductal carcinomas classified as T3 or T4 were included in the study, regardless of pre or post menopause status. Sachets containing glutamine 15g (“A”) or milk protein 15g (“B”) were prepared by a registered pharmacist. Allocation of patients was made by software program. Patients who received sachets labeled “A” were included in G1 group. The remaining patients, treated with the preparation labeled “B”, were included in group G2. Sachets contents were blended in 150 ml of drinking water, and were given daily to each patient during the entire course of neoadjuvant chemotherapy. Peripheral blood samples were collected in the first day of each of the three cycles of chemotherapy before drug infusion. Tumor and normal breast samples were collected at the end of Patey’s surgical procedure. Samples were analysed for GSH and TBARS contents.

RESULTS: TBARS and GSH values were not different in breast healthy and tumor tissues nor blood when comparing control (G-2) and glutamine-treated (G-1) patients. Also, no significant differences were found in TBARS and GSH levels comparing different timepoints within the same group.

CONCLUSION: Oral GLN (15g/kg/day) offers no protection against systemic or local oxidative stress in women with breast Ca undergoing neoadjuvant chemotherapy (FAC).

Keywords: Breast GLN (15g/kg/day) offers no protection against systemic or local oxidative stress in women with breast Ca undergoing neoadjuvant chemotherapy (FAC).

RESUMO

OBJETIVO: Avaliar os efeitos da administração oral de GLN sobre o estresse oxidativo em mulheres com câncer mamário submetidas à quimioterapia neoadjuvante com esquema FAC (5 fluorouracil 500 mg/m²+doxorubicina 50 mg/m²+ciclofosfâmida 500 mg/m² de superfície corporal).

MÉTODOS: Vinte mulheres (idade média: 51,7 anos) com carcinoma ductal de mama, classificado como T3 ou T4 foram includidas no estudo, independente do seu estado menstrual. Embalagens contendo 15g de glutamina ou proteína do leite foram preparadas por farmacêutico. Alocação dos pacientes foi feita na sequência gerada por “software”. Pacientes que receberam embalagens tipo “A” foram incluídas no grupo G1. Pacientes tratadas com a preparação denominada “B”, foram incluídas no grupo G2. O material foi misturado com uso de liquidificador em 150 ml de água potável, e administrado diariamente aos pacientes durante todo o curso da quimioterapia neoadjuvante (esquema FAC). Amostras de sangue periférico foram coletadas no início dos três ciclos de quimioterapia, antes da infusão de drogas. Amostras de tumor e tecido mamário normal foram colhidas no final do procedimento cirúrgico (cirurgia de Patey). As amostras foram analisadas para determinação das concentrações de GSH e TBARS.

RESULTADOS: Concentrações de TBARS/ GSH não foram diferentes no tumor. tecido mamário ou sangue, comparando os grupos G-2 vs.G-1. Além disso, não foram encontradas diferenças significativas nos níveis de TBARS e GSH comparando momentos diferentes dentro do mesmo grupo.

CONCLUSÃO: GLN (15g/kg/dia) administrada por via oral não oferece proteção contra o estresse oxidativo sistêmico ou local em mulheres com câncer de mama, submetidas à quimioterapia neoadjuvante (FAC).

Introduction

Breast cancer is the second most common cancer worldwide and more common among women, accounting for 22% of new cases in this group. In Brazil, 49,400 new cases are expected in 2010, with an estimated risk of 49 cases per 100,000 women.1

Oxidative stress affects cell structure and function by inducing lipid, carbohydrate, protein and DNA damage in biological systems.2 Reactive oxygen substances (ROS) are chemically reactive molecules that are produced endogenously during various cellular metabolic activities.3 These free radicals tend to be eliminated from the body by all the enzymes glutathione peroxidase, glutathione reductase, superoxide dismutase and by catalase. Thus, under physiological conditions, the balance between pro-oxidant agents and antioxidant defenses is attained.4 When the balance cannot be established, oxidative stress occurs. To the living organisms remain three alternatives: a) adaptation, due to increased activity of antioxidant systems; b) tissue injury, lipids, carbohydrates or proteins damage, c) cell death by necrosis or apoptosis.5 Among well documented effects, free radicals are

Antioxidants are substances capable of inhibiting oxidation. The antioxidant mechanism involves substances that prevent the generation of reactive oxygen species or capture them to prevent their interaction with cellular targets. This group of substances is represented by antioxidant enzymes, proteins and chelating agents such as transferrin and ceruloplasmin and nonenzymatic substances such as glutathione (GSH).10 Glutamine (GLN) is a conditionally essential nutrient during sepsis or trauma11 and the most abundant amino acid in plasma and skeletal muscle.12

Methods

Patients

This prospective, randomized, controlled, double-blind study, clinically staged by UICC-TNM system14 was approved by

Chemicals and drugs

L-Glutamine (L-Gln) was purchased from Ajinomoto/Brazil. All other chemicals were purchased from standard commercial sources and were of the highest quality available.
Biochemical analysis

TBARS$^{20}$ and GSH$^{21}$ concentrations were measured according to biochemical methods published elsewhere.

Statistical analysis

Comparisons between control (G-2) and glutamine groups (G1) were made using the Mann-Whitney $U$ test). ANOVA (Friedman test) followed by Dunn’s Multiple Comparison Test was used compare all timepoints. GSH and TBARS tissue samples contents were compared with Mann-Whitney $U$ test. In all cases, the level of significance was set at 5%. P<0.05 was considered statistically significant.

Results

Eleven patients (55%) had left breast tumor and in 9 patients (45%) the right breast was affected. Tumors were classified as T2 in 5 patients (25%), T3 in 4 patients (20%), T4a in 1 patient (5%), T4b in 8 patients (40%) and T4d in 2 patients (10%). Regarding the hormonal status, 10 patients (50%) were premenopausal, 5 patients (25%) were menopausal and 5 patients (25%) were postmenopausal women.

TBARS and GSH values were not different in breast healthy and tumor tissues when comparing control (G-2) and glutamine-treated (G-1) patients (Figures 1-2).

No statistically significant differences were found in blood TBARS and GSH levels comparing control (G-2) and glutamine-treated (G-1) patients (Figures 3 and 5). Also no significant differences were found in TBARS and GSH levels comparing different timepoints within the same group (Figures 4 and 6).
Oxidative stress parameters in women with breast cancer undergoing neoadjuvant chemotherapy and treated with nutraceutical doses of oral glutamine

**FIGURE 3** - Reduced glutathione (GSH) concentrations (micromoles of GSH per ml of plasma) in GLN (G1) and milk protein (G2) treated patients. Bars represent mean ± SD of control (blue bars) and GLN (orange bars) groups in T1, T2 and T3 time-points. GSH levels were not different within groups by ANOVA test (Friedman/Dunn test).

**FIGURE 4** - Reduced glutathione (GSH) concentrations (micromoles of GSH per ml of plasma) in GLN (G1) and milk protein (G2) treated patients. Bars represent mean ± SD of control (blue bars) and GLN (orange bars) groups in T1, T2 and T3 time-points. GSH levels were not different comparing G1 versus G2 groups by ANOVA test (Friedman/Dunn test).

**FIGURE 5** - Thiobarbituric acid-reactive substances concentrations (micromoles of malondialdehyde per ml of plasma) in GLN (G1) and milk protein (G2) treated patients. Bars represent mean ± SD of control (blue bars) and GLN (orange bars) groups in T1, T2 and T3 time-points. TBARS levels were not different within groups by ANOVA test (Friedman/Dunn test).
Breast cancer is the leading cause of cancer death among women in the industrialized countries. Several lines of evidence strongly suggest the involvement of cellular oxidative stress in carcinogenic processes. Studies carried out both in human and experimental animals show that lipid peroxidation (LP) has a very important role in the initiation and promotion of cancer. The damage to the systemic systems has been shown to induce LP in the course of carcinogenesis. Increased LP products in breast cancer tissues have been demonstrated. Tumor cells have been shown to have normal levels of antioxidant enzyme activities when compared with normal cells. Enzyme activities were not evaluated in our study. However, the levels of GSH and TBARS in samples removed from healthy breast tissue and tumor were not different (Figures 1-2). Published studies implicate free radicals in cell transformation and in the uncontrolled growth potential of tumor cells. Among well-documented effects, free radicals are known to induce DNA damage and genomic instability favoring the acquisition of mutations that contribute to cellular transformation and cancer cells survival. ROS modifies redox-sensitive signal transduction pathways that contribute to the cell transformation, cell growth and cancer progression. Permanent modification of genetic material resulting from the oxidative damage is one of the vital steps involved in mutagenesis that leads to carcinogenesis. Stimulation of DNA damage can either arrest or induce transcription, signal transduction pathways, replication errors and genomic instability, all of which are associated with carcinogenesis.

Protection provided by GLN against oxidative damage follows two known pathways. First, Gln donates both carbon and nitrogen to glutathione (GSH), the major intracellular antioxidant. Second, Gln metabolism provides a source of reducing equivalents (NADPH) necessary to maintain GSH in its reduced state. Studies have demonstrated that breast cancers show high levels of oxidative stress as verified by the detection of oxidative DNA adducts in breast cancer tissue or a significant raise in oxidative stress markers in the plasma from breast cancer patients. Moreover, the use of chemotherapy increases oxidative stress. Chemotherapy and radiotherapy promote further oxidative shift, which potentiates already existing chronic oxidative stress linked to breast cancer.

Whereas the protective action of GLN in cancer-bearing experimental animals has been demonstrated, one would expect a similar effect in humans. It is questioned why GSH levels did not increase in this study. The answer may be related to dose of GLN used. In this study, patients in the glutamine group received daily doses of 15g of GLN, dissolved in 150 ml of water, regardless of individual weight. Thus, a 60 kg patient received a daily dose of GLN corresponding to 0.25g/kg/day. To obtain protective effects in ischemia / reperfusion, higher doses were used by other researchers. Alves et al. used 0.50g/Kg intravenously in a single dose, over 3 hours. Even superior doses have been used in experimental studies. Tokorova et al. used 1g/kg/day in a rat model to obtain protective effects.

The safety of GLN use in human beings has been studied. Garlick reported that no adverse effects of glutamine have been demonstrated when given in doses of 0.57g/kg/day in various clinical studies offering glutamine over 4 hours to 30 days. The same author concludes that no adverse effects of glutamine were found when glutamine was administered in doses of 50-60g/day. However, this assessment, made in short-term studies in hospital patients, may not be appropriate for chronic supplementation in Ca bearing subjects.

Conclusion

In the present study, oral GLN (15g/kg/day) offered no protection against systemic or local oxidative stress in women with breast Ca, undergoing neoadjuvant chemotherapy with FAC regimen.

References


Correspondence:
Paulo Roberto Leitão de Vasconcelos
Rua Prof. Costa Mendes, 1608 3º andar, Bloco Didático
60430-140, Fortaleza, CE, Brazil
Tel:+55-85-3366-8083; fax:+55-85-3366-8064
paulo.vasconcelos@ufc.br

Conflict of interest: none
Financial source: none

Research performed at the Experimental Surgery Research Laboratory (LABCEX), Department of Surgery, Federal University of Ceará (UFC) and Clinical Oncology and Mastology Units, Santa Casa de Fortaleza, Ceará, Brazil.