Classroom acoustical screening survey worksheet: translation and cultural adaptation into Brazilian Portuguese

Planilha de triagem acústica da sala de aula: tradução e adaptação cultural para o Português Brasileiro

Aline Duarte da Cruz¹, Thais Corina Said de Angelo², Andréa Cintra Lopes², Diego Martins Pinto Guedes¹, Tacianne Kriscia Machado Alves¹, Vanessa Luísa Destro Fidêncio¹, Adriane Lima Mortari Moret³, Regina Tangerino de Souza Jacob³

ABSTRACT

Introduction: In the school environment, teachers feel uncomfortable when teaching in noisy classrooms and realize the difficulty of students in hearing the information, what makes the noise, not just an annoyance, but also an aggravating factor that interferes with school performance. Therefore, appropriate acoustic conditions to the educational environment are indispensable. Currently, there is no standardization of the methodology that should be used to measure the acoustic characteristics of classrooms. Purpose: Translating and adapting into Brazilian Portuguese the “Classroom Acoustical Screening Survey Worksheet” protocol. Methods: The translation and adaptation of the protocol have included the translation into Portuguese, linguistic adaptation, and grammar and idiomatic equivalences revision, as well as the content validation by means of two steps: individual evaluation and meeting of specialists. Results: The protocol was translated and adapted into Portuguese. The protocol presented content validity, and after the appreciation and consensus of the experts, it was showed that the cultural adaptation of content was evident and objective, making possible to apply it in Brazilian classrooms. Conclusion: “Classroom Acoustical Screening Survey Worksheet” protocol was translated and adapted into Brazilian Portuguese, and named “Planilha de triagem acústica da sala de aula.” Further studies should investigate its applicability and effectiveness in observing the acoustic characteristics of the classroom in the national scenario.

Keywords: Schools; Noise; Signal-to-noise ratio; Acoustics; Protocols

RESUMO

Introdução: No ambiente escolar, os professores sentem-se incomodados em ministrar aulas em salas ruidosas e percebem a dificuldade dos alunos em ouvir a informação, constatando, assim, que o ruído não é apenas um incômodo, mas também um fator agravante, que interfere no rendimento escolar. Portanto, são imprescindíveis condições acústicas adequadas para o ambiente educacional. Atualmente, não há padronização da metodologia que deve ser utilizada para mensurações das características acústicas das salas de aula. Objetivo: Traduzir e adaptar para o Português Brasileiro o protocolo “Classroom Acoustical Screening Survey Worksheet” . Métodos: A tradução e a adaptação do protocolo incluíram tradução para o Português, adaptação linguística e revisão da equivalência gramatical e idiomática, assim como a validação de conteúdo, por meio de duas etapas: avaliação individual e reunião entre os especialistas. Resultados: O protocolo foi traduzido e adaptado para o Português, resultando no instrumento “Planilha de triagem acústica da sala de aula”. O protocolo apresentou validade de conteúdo e, após apreciação e consenso dos especialistas, mostrou que a adaptação cultural do conteúdo foi clara e objetiva, sendo possível aplicá-la à realidade das salas de aula brasileiras. Conclusão: O protocolo “Classroom Acoustical Screening Survey Worksheet” foi traduzido e adaptado para o Português Brasileiro, sendo nomeado “Planilha de triagem acústica da sala de aula”. Estudos futuros deverão investigar sua aplicabilidade e efetividade na observação das características acústicas das salas de aula no cenário nacional.

Palavras-chave: Instituições acadêmicas; Ruído; Razão sinal-ruído; Acústica; Protocolos
INTRODUCTION

Evaluating the acoustic characteristics in classrooms for students with hearing impairment is of extreme importance, once in the school environment, the noise is not only an annoyance but also interferes with the performance of teaching activities\(^1,2\).

The noise and its effects on the human organism have been arousing interest in various areas related to education and health\(^3\). The audiologist has studied the noise, focusing on the hearing loss that may be caused by exposure and its consequences, acting in prevention, detection, and rehabilitation of such loss\(^4\).

In the school environment, teachers feel uncomfortable teaching in noisy classrooms and realize the difficulty of students in hearing the information, as well as the dispersion of their attention. The most frequent reports of teachers concerning noise in the classroom are: feeling uncomfortable in teaching in noisy classrooms; presenting voice problems by intense vocal effort; students difficulty in hearing the teacher speech and their dispersion; all of them harming the learning and the welfare\(^5,6,7\).

The noise may cause stress, difficulty of concentration, delay of neuropsychomotor development, aggressiveness, and low performance. The noise found in classrooms and schoolyard, if compared with the Brazilian Society of Otolaryngology data, present the same levels of noise caused by an intense traffic, a racing car or an underground train, which ranges between 80 and 110 dB, showing that certainly these values are neither appropriated to school environment, nor to children’s physical and mental health in this learning phase, nor to the other professionals at the school\(^7\).

A study that evaluated classrooms of nine public schools, in Belo Horizonte (Brazil), concerning the measurement of acoustic parameters of Leq, reverberation time (T30) and the Speech Transmission Index (STI), concluded that such parameters are out of the required standards by international rules for the appropriate acoustic condition in education\(^1\).

The noise caused by internal sources (talking, furniture, equipment) and by external sources (traffic, people traffic, proximity to urban centers) stand over the recommended values by the Brazilian Association of Technical Standards (ABNT) and by the World Health Organization (WHO). Thus, the performance in the teaching-learning process suffers interference, once does not exist a favorable environment for concentration and speech understanding\(^8\).

The Brazilian Association of Technical Standards, by means of the rule NBR 10152 of 1986\(^9\), regulates the noise levels inside classrooms, considering the recommended values between 40 dB(A) and 50 dB(A). Regarding the appropriate reverberation time, there is no specific standardization for classrooms. In the rule NBR 10152, the required conditions for the evaluation of noise acceptability in communities are stated, and also the maximum levels of noise in diverse environments are established. Therefore, appropriate acoustic conditions for the educational environment are indispensable\(^10\).

The American National Standard Institute (ANSI/ASA S12.60)\(^11\) recommendations establish 35 dB(A) as the maximum value of noise level inside classrooms; the signal-to-noise ratio (SNR) must be of at least +15 dB, and the reverberation time must not exceed 0.6 seconds.

Nowadays, there is no standardization of methodology to be used for measurements of acoustic characteristics of classrooms\(^12\). It is important that schools are instructed about acoustic adequacy for classrooms, once the acoustics characteristics may interfere with the learning process.

It is fundamental that the Audiologist knows the school reality of the student for the instrumentation of the Audiologist in order to demonstrate the impact of hearing loss in the communication and learning processes\(^13,14\).

In the international literature, the “Classroom Acoustical Screening Survey Worksheet”\(^14\) is available; a screening instrument that may assist the professionals in the acoustic measurement of the educational environment, which is observed as a quick and easy tool to apply\(^13,14,15\).

The instrument\(^14\) is subdivided into topics. The first part is directed to observation and general information of the classroom, through questions that address: classroom dynamics (1A); background noise (1B); reverberation time (1C); and the presence of accessibility equipment (1D). The second part is related to information derived from the measurement, for example, item 2A, concerning the noise, which can be evaluated by means of a Sound Pressure Level Meter or by using the applications available for smartphones. Item 2B, concerning the reverberation, which suggests the use of applications available for smartphones or web programs that calculate the RT-60. Item 2C, concerning the Critical Distance estimate, which can be obtained through the values of the classroom volume and the reverberation time obtained in the previous measurements.

This study aimed to translate and cross-culturally adapt into Brazilian Portuguese the “Classroom Acoustical Screening Survey Worksheet” protocol\(^14\).

METHODS

The translation and cross-cultural adaptation of the “Classroom Acoustical Screening Survey Worksheet” protocol\(^14\) into Brazilian Portuguese were based on the steps indicated by other studies\(^16,17,18\) as the following description.

Translation of the questionnaire into the Brazilian Portuguese language

The instrument, in the original version, was given to two translators, both fluent in English, who knew neither each other nor the protocol, aiming to elaborate individually and stealthily
Acoustical screening at school

Audiol Commun Res. 2017;22:e1766

since there is no national Planilha de triagem (9)

Planilha de triagem acústica da sala de aula (11)

" was (19,20)

and the international protocol. Cultural equivalence is established when comprehen-

ence between the English and the Portuguese versions of the

Cross-cultural adaptation

The purpose of this phase was to establish cultural equiva-

lence between the English and the Portuguese versions of the

protocol. Cultural equivalence is established when comprehen-

sion difficulties of the questions performed were not observed

by, at least, 80% of the assessment researchers.

A script with the protocol items and the following evalu-

ation criteria was used: organization, scope, objectivity, and

relevance. In this process, the final version was sent to six Audiologists in order to verify the translation into Brazilian reality. After the evaluation feedback, the compilation of the responses and alterations suggested was realized, and each participant expressed their opinion due to the items, coming all to the consensus.

The “Planilha de triagem acústica da sala de aula” was divided into two parts and subdivided into topics. The first one collects general information from the classroom, such as classroom dynamics (1A); background noise (1B); reverberation time (1C); and the presence of accessibility equipment (1D).

Item 1A presents observational questions about the dynamics of classrooms. Items 1B and 1C are composed of questions with following answer options: “yes” or “no”; these are suggestive aspects of high levels of noise or reverberation time when an affirmative response is marked. Therefore, if there are many affirmative answers, the Audiologist may suggest modifications and preventive measures in classrooms in order to reduce noise and reverberation. Item 1D (auxiliary equipment) indicates

the presence of students with hearing impairment, users of Frequency Modulation System (FM System), or even the indication of FM System use in soundfield for the school, through orientations to the principals, coordinators, and teachers.

The second part is related to information resulting from the specific measurement for items 2A (noise), 2B (reverberation) and 2C (critical distance), collected through measurements carried out by means of applications for smartphones or software quoted in the worksheet. It is indicated for the analysis of the results, the Brazilian standard for noise (9), and the international standard for reverberation time (11) since there is no national regulation.

The classroom acoustic screening worksheet provides a survey of the acoustic characteristics of the environment, which may assist the Audiologist, and also may be used as basis and guide for instructions and adjustments that may be necessary.

RESULTS

Content validation was carried out by means of the individual evaluation and meeting among six specialists, after approval and final consensus of the following evaluated items: organization, scope, objectivity, and relevance of the screening protocol. The protocol has presented validity of content and showed that content adaptation was evident and objective, reaching 100% of comprehension of the items in the protocol.

After evaluation and consensus of the participating specialists, only the item “Portable/Relocatable Classroom,” included in the item “Classroom Style” (1A), was removed taking into consideration that Brazilian schools do not present this class modality. There was no suggestion of modification regarding this vocabulary for reaching cultural equivalence.

The translation and cross-cultural adaptation of the “Classroom Acoustical Screening Survey Worksheet” protocol (14) resulted in the instrument named “Planilha de triagem acústica da sala de aula” (Appendix 1) with the same number of questions in the original version.

DISCUSSION

The cross-cultural adaptation of the screening protocol aimed to establish cultural equivalence between the English and Brazilian Portuguese versions of the “Classroom Acoustical Screening Survey Worksheet”.

According to the Brazilian Standards NBR 10152 of 1987 (9) from the Brazilian Association of Technical Standards, the appropriate intensities for the level of noise inside classrooms may vary from 35 dB(A) to 45 dB(A). Unfortunately, many of the research carried out in classrooms show that acoustic conditions highly vary according to each school, and the values are far from the ideal standard (19,20).

Therefore, scientific interest in order to improve the listening situation of children, especially those with hearing loss,
is increasing. Through observation, behavioral assessment, and classroom acoustic measurement, it is possible to implement a plan that shall result in a school environment with a more satisfactory hearing situation for students\(^{14}\).

Besides disturbing the communication between teacher and student, noise may also cause physical, emotional and educational prejudice such as hearing alterations or hearing loss, tinnitus, listening effort, stress, and learning gaps, as the student shall miss part of the content or even receive a distorted message. Noise is also considered as a risk factor for the alterations on the voice of teachers\(^{3,5,6,20,21,22}\).

Based on the information gathered through the screening, the Audiologist may guide and make suggestions for structural adaptations in the classroom; since simple school environment accommodation, for example, suggesting the feet of the chairs and tables to be rubberized, requesting the use of curtains and carpets, among others, which do not depend on structural changes linked to major project budget; as well as using Assistive Technology (AT), for example, the Frequency Modulation System (FM System) in soundfield system to improve speech recognition in a noisy environment\(^{23,24}\).

It is worth to highlight that in rooms with excessive reverberation times, the use of soundfield system may increase the reverberation and sound, creating additional problems\(^{25}\). The ASA/ANSI\(^{11}\) affirms that the amplification systems should not be used in an attempt to replace good acoustics, and advocates that noise levels and reverberation times inside classroom should be documented prior to the installation of soundfield amplification for ensuring the success of this system.

The soundfield system is classified as a Classroom Audio Distribution System (CADS), and according to the regulation by ASA/ANSI S 12.60\(^{11}\), its main objective is to distribute the sound source in the educational environment. It is not idealized for providing warning alerts or signs. The standard also states that the CADS may also assist in cases of vocal amplitude difficulties of the teacher, and in certain conditions of students with hearing difficulties.

The benefits of using CADS for children with normal hearing are, thus, described in the literature: improvements in school performance and speech recognition\(^{6,26}\). The literature indicates a reduction of effort and vocal fatigue, and greater ease of teaching as benefits for teachers, with the use of this system\(^{6,27,28}\).

It is expected that the “Planilha de triagem acústica da sala de aula” may be used by Audiologists in order to get information about the acoustic characteristics of the classroom, once it is important schools be instructed about the acoustic adaptation in classroom and the impact that may cause, since these acoustic characteristics can interfere with the learning process.

It is also worth noting the importance of further studies with the purpose of validating and verifying the applicability of the “Planilha de triagem acústica da sala de aula” in the reality of Brazilian schools.

It is important to emphasize that the Audiologist should work in partnership with the teacher in the application of the protocol, since classroom experiences are increasingly dynamic and interactive, with estimates that students are involved with their peers or in groups of discussion for up to 34% of the school day and not only in expository activities\(^{29}\).

CONCLUSION

“Classroom Acoustical Screening Survey Worksheet” protocol was translated and cross-cultural adapted into Brazilian Portuguese, and named, in Portuguese, “Planilha de triagem acústica da sala de aula.”

Further studies should investigate its applicability and effectiveness in the observation of acoustic characteristics of classrooms in the Brazilian scenario.

REFERENCES

Appendix 1. Planilha de triagem acústica da sala de aula

Planilha de triagem acústica da sala de aula

Fonoaudiólogo(a):
Escola:
Nome do Estudante:
Ano:
Data:
Professor:

A Dinâmica da Sala de Aula

Tipo da Sala de Aula:
- Tradicional
- Aberta

Forma de Ensino:
- Aula teórica
- Individual
- Grupo Grande
- Grupo Pequeno
- Outros

Distância Professor-Aluno:
- Aluno mais Próximo _____ metros
- Aluno mais Distantes _____ metros

Distribuição das carteiras:
- Grupo
- Fileira
- Forma de U ou Círculo
- Outros

Características da Sala de Aula

<table>
<thead>
<tr>
<th>SIM</th>
<th>NÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>O ventilador ou o ar-condicionado são audíveis.</td>
<td></td>
</tr>
<tr>
<td>O ruído do pátio é audível.</td>
<td></td>
</tr>
<tr>
<td>O ruído do tráfego de carros é audível.</td>
<td></td>
</tr>
<tr>
<td>O ruído do tráfego de aviones é audível.</td>
<td></td>
</tr>
<tr>
<td>Os sons de outras salas de aula ou corredor são audíveis com o ventilador ou ar-condicionado desligados.</td>
<td></td>
</tr>
</tbody>
</table>

Planilha de triagem acústica da sala de aula

Características da Sala de Aula

<table>
<thead>
<tr>
<th>SIM</th>
<th>NÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A superfície é dura e plana, sem telhas e teto acústico.</td>
<td></td>
</tr>
<tr>
<td>Altura do teto é maior do que 3,35 metros.</td>
<td></td>
</tr>
<tr>
<td>As telhas do teto acústico são pintadas.</td>
<td></td>
</tr>
<tr>
<td>As paredes são construídas de materiais refletores de som (por exemplo, placas de gesso, concreto, painéis de madeira).</td>
<td></td>
</tr>
<tr>
<td>Os pisos são construídos de materiais refletores de som (por exemplo, concreto, telhas, madeira).</td>
<td></td>
</tr>
</tbody>
</table>

* A opção “sim” sugere tempos de reverberação potencialmente elevados.

D Presença dos seguintes equipamentos de acessibilidade

- **FM pessoal** [Número de estudantes ____] Tipo ____
- **ADS: Em toda sala de aula** Tipo ____
- **ADS: Área específica** Tipo ____

1 Sistema de Distribuição de Som em Sala de Aula (ADS ou CADS, do inglês Classroom Audio Distribution System)

INFO. INFORMAÇÃO MEDIANTE MENSURAÇÃO

2 A - Ruído

Medidor de nível de pressão sonora: Marca/Modelo_______

Método Usado: ○ Média de uma hora ○ Curto prazo_______

- Nível do Ruído Ambiente (dBA, dBC)
- Sala de Aula Desocupada ou Ocupada
- Nível da Voz do Professor (dBA):
- Sala de Aula Ocupada

O tempo de reverberação é determinado pelo volume da classe e as características de absorção dos materiais que compõem as paredes, piso e teto da sala de aula.
Planilha de triagem acústica da sala de aula

<table>
<thead>
<tr>
<th>Condição (círculo o número correspondente)</th>
<th>1 = desocupada, HVAC desligados; 2 = desocupada, HVAC ligados; 3 = ocupada, HVAC desligados; 4 = ocupada, HVAC ligados</th>
<th>Sem ADS em sala de aula</th>
<th>Com ADS em Sala de Aula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4</td>
<td>1 2 3 4</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>Circuito de ponderação (média)</td>
<td>A C A C</td>
<td>A C A C</td>
<td>A A</td>
</tr>
<tr>
<td>Estudante Alvo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVAC - Sistemas de aquecimento, ventiladores e ar condicionado (Heating, ventilation and air conditioning)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADS - Sistema de Distribuição de Som em Sala de Aula (ADS ou CADS do Inglês Classroom Audio Distribution System)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNR - Relação sinal ruído (Signal-to-noise - ratio)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comentários

2 B - Tempo de Reverberação

Cálculo: ______ Estímulo sonoro utilizado: ________

<table>
<thead>
<tr>
<th>Frequência:</th>
<th>500 Hz</th>
<th>1000 Hz</th>
<th>2000 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Média RT-60 na Sala de Aula: ______ segundos
Planilha de triagem acústica da sala de aula

Estimativa:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume da Sala (V)</td>
<td>= __________ metros cúbicos</td>
<td></td>
</tr>
<tr>
<td>Área (A) chão</td>
<td>__ x Coef. ABS.* =</td>
<td>A chão</td>
</tr>
<tr>
<td>Área teto</td>
<td>__ x Coef. ABS._ =</td>
<td>A teto</td>
</tr>
<tr>
<td>Área parede lado 1</td>
<td>__ x Coef. ABS._ =</td>
<td>A parede 1</td>
</tr>
<tr>
<td>Área parede lado 2</td>
<td>__ x Coef. ABS._ =</td>
<td>A parede 2</td>
</tr>
<tr>
<td>Área parede ponta 1</td>
<td>__ x Coef. ABS._ =</td>
<td>A ponta 1</td>
</tr>
<tr>
<td>Área parede ponta 1</td>
<td>__ x Coef. ABS._ =</td>
<td>A ponta 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total A</td>
</tr>
</tbody>
</table>

* Coeficiente de absorção

Média estimada RT da Sala de Aula = 0.049 x (V)/ (A) = _______ segundos

Nota: Podem ser utilizados programas on-line ou aplicativos para calcular RT-60 como, por exemplo:

- www.sengielaudio.com/calculator-RT60.htm
- www.mcsquared.com/homrteng.htm
- http://www.wp.feb.unesp.br/jcandido/acustica/Calculos/Tempo_de_reverb.htm

Coeficientes de absorção sonora para materiais de sala de aula

<table>
<thead>
<tr>
<th>Material</th>
<th>Média Coeficiente de Absorção</th>
<th>Material</th>
<th>Média Coeficiente de Absorção</th>
<th>Material</th>
<th>Média Coeficiente de Absorção</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paredes</td>
<td></td>
<td>Pisos</td>
<td></td>
<td>Teto</td>
<td></td>
</tr>
<tr>
<td>Beira</td>
<td>0.04</td>
<td>Madeira</td>
<td>0.04</td>
<td>Gesso, cal ou em ripa</td>
<td>0.05</td>
</tr>
<tr>
<td>Concreto pintado</td>
<td>0.07</td>
<td>Linóleo</td>
<td>0.03</td>
<td>Telhas acústicas (5/8”) – suspensas</td>
<td>0.68</td>
</tr>
<tr>
<td>Janela de vidro</td>
<td>0.12</td>
<td>Tapete em concreto</td>
<td>0.37</td>
<td>Telhas acústicas (1/2”) – em suspensão</td>
<td>0.66</td>
</tr>
<tr>
<td>Gesso em concreto</td>
<td>0.06</td>
<td>Tapete em espuma</td>
<td>0.63</td>
<td>Telhas acústicas (1/2”) – não suspensos</td>
<td>0.67</td>
</tr>
<tr>
<td>Madeira compensada</td>
<td>0.12</td>
<td></td>
<td></td>
<td>Painéis de alta absorção - suspensos</td>
<td>0.91</td>
</tr>
<tr>
<td>Bloco deconcreto</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comentários:
Planilha de triagem acústica a sala de aula

2 C - Estimativa da Distância Crítica

Recomendação das Normas Acústicas para Sala de Aula para Espaços de Aprendizagem

<table>
<thead>
<tr>
<th>Sala de Aula Permanente</th>
<th>Nível do ruído: 35dBA/55dBC; Tempo de Reverberação: 0.6 segundos*</th>
</tr>
</thead>
</table>

* Nota: Os espaços em salas de aula permanentes devem ser facilmente adaptáveis para permitir uma redução no tempo de reverberação de 0.3 segundos para acomodar as crianças com deficiência auditiva.

<table>
<thead>
<tr>
<th>Volume da Sala (metros cúbicos)</th>
<th>Tempo de Reverberação (segundos)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,3</td>
</tr>
<tr>
<td>56,6</td>
<td>1,58</td>
</tr>
<tr>
<td>113,3</td>
<td>2,23</td>
</tr>
<tr>
<td>169,9</td>
<td>2,71</td>
</tr>
<tr>
<td>226,5</td>
<td>3,14</td>
</tr>
<tr>
<td>283,2</td>
<td>3,51</td>
</tr>
<tr>
<td>339,8</td>
<td>3,84</td>
</tr>
<tr>
<td>396,4</td>
<td>4,18</td>
</tr>
<tr>
<td>453,1</td>
<td>4,45</td>
</tr>
<tr>
<td>509,7</td>
<td>4,72</td>
</tr>
<tr>
<td>566,3</td>
<td>4,97</td>
</tr>
</tbody>
</table>

Distância Crítica (metros)