NUTRIÇÃO MINERAL DE LEGUMINOSAS TROPICAIS.

III. CONCENTRAÇÃO E ACUMULO DE MACRONUTRIENTES

E DETERMINAÇÃO DO COEFICIENTE DE DIGESTIBILIDADE IN VIVO

DA Leucaena leucocephala (LAM.) DE WIT CV. PERU

EM FUNÇÃO DA IDADE *

DENISE HELU SILVA **
HENRIQUE PAULO HAAG ***

RESUMO

As leguminosas tropicais constituem atualmente uma fonte de proteína de alta qualidade além de outras qualidades como produção de madeira no caso das arbustivas e como proteção contra erosão nas demais.

Sendo a leucena (*Leucaena leucocephala* (Lam.) de Wit cv. Peru) uma espécie...
cie bastante promissora para a pecuária brasileira, foi conduzido um ensaio de campo com a finalidade de se conhecer o hábito alimentar dessa lehuminosa. O ensaio foi instalado visando obter dados para análise de crescimento, concentração e extração dos macronutrientes (N, P, K, Ca, Mg e S, Mn e Zn) e matéria seca digestível das folhas "in vivo", em bovino, em função da idade da planta.

A partir dos dados obtidos, constatou-se que:

a) a produção de matéria seca total é máxima aos 360 dias de idade e o maior incremento na produção de folhas, expresso em matéria seca, se dá dos 240 aos 360 dias;

b) as concentrações de nitrogênio e potássio diminuem nas folhas e caules com a idade da planta, ao passo que a de cálcio no caule não é afetada pela idade;

c) aos 360 dias, época de produção máxima de matéria seca das folhas contém em 535,46 g/planta: 16,36 g nitrogênio, 0,61 g de fósforo, 10,65 g de potássio, 8,08 g de cálcio, 1,58 g de magnésio, 0,51 g de enxofre;

d) aos 360 dias, os caules contêm em 1783 g/planta: 15,82 g de nitrogênio, 0,65 g de fósforo, 20,37 g de potássio, 7,01 g de cálcio, 0,44 g de magnésio, 1,06 g de enxofre;

e) o acúmulo de macronutrientes na planta aos 360 dias obedece a seguin
Ordem: N > K > Ca > Mg > S > P;

f) aos 360 dias, a matéria seca digestível das folhas é 51,05%.

INTRODUÇÃO

As leguminosas atualmente têm recebido considerável atenção das instituições de pesquisa visando eliminar algumas dificuldades que limitam a produção final como o aumento substancial no preço dos fertilizantes nitrogenados, aliado à deficiência de proteínas, principalmente nos trópicos (Oakés & Skov, 1967; Jones, 1979).

Grande empenho por parte dessas instituições está voltado a uma leguminosa forrageira - *Leucaena leucocephala* - com grande possibilidade de vir a ser empregada num futuro próximo com êxito no Brasil.

Leucaena leucocephala (Lam.) de Wit é uma leguminosa pertencente à subfamília Mimosoideae e à tribo *Eumimosseas* (Alcântara et alii, 1979) e é originária do México (Hill, 1971; Dijkman e Farinas, citados por Vilela, 1976).

* Denominação da *Leucaena leucocephala* antes de 1960.
HAAG & MITIDIERI (1980), no Brasil, objetivando a obtenção de um quadro sintomatológico da carência de macronutrientes utilizando-se de solução nutritiva, objetivaram para plantas normais os seguintes teores dos elementos nas folhas: N% - 3,51; P% - 0,4; K% - 2,75; Ca% - 1,11; Mg% - 0,42; S% - 0,22, e as com sintomas de deficiência: N% - 2,79; P% - 0,11; K% - 1,33; Ca% - 0,41; Mg% - 0,18; S% - 0,11.

ADENEYE (1981), na Nigéria, apresenta a composição mineral da matéria seca de folhas de leucena: Ca% - 2,8%; P% - 0,26; Mg% - 0,37; K% - 1,78; Na% - 0,21 e Fe% - 0,12.

A NATIONAL ACADEMY OF SCIENCES (1977) apresenta os nutrientes presentes em folhas de leucena (incluindo ramos finos) como sendo:

<table>
<thead>
<tr>
<th>Elemento</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>2,2-4,3</td>
</tr>
<tr>
<td>P</td>
<td>0,2-0,4</td>
</tr>
<tr>
<td>K</td>
<td>1,3-4,0</td>
</tr>
<tr>
<td>Ca</td>
<td>0,8-2,0</td>
</tr>
<tr>
<td>Mg</td>
<td>0,4-1,0</td>
</tr>
</tbody>
</table>

O presente trabalho visa:

a) analisar o crescimento da Leucaena leucocephala (Lam.) de Wit.

b) determinar a concentração e extração dos macronutrientes em função da idade;

c) determinar a digestibilidade da matéria seca in vivo em função da idade.

MATERIAIS E MÉTODOS

O experimento foi realizado no campo experimental
pertencente ao Departamento de Agricultura e Horticultura da Escola Superior de Agricultura "Luiz de Queiroz" - USP, Piracicaba, São Paulo. A localidade tem as coordenadas geográficas: latitude 22°41'31" Sul e longitude 47°38'01" Oeste; altitude 540 m (Instituto Brasileiro de Geografia e Estatística, 1957).

O solo onde foi instalado o experimento é um Latossolo Vermelho Escuro-Orto, série "Luiz de Queiroz" (RANZANI et alii, 1966), e em vindo cultivado a muitos anos com plantio de hortaliças. A análise química desse solo apresenta os seguintes parâmetros:

<table>
<thead>
<tr>
<th>pH (1:2 H₂O)</th>
<th>Teor trocável em e.mg/100g TFSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,9</td>
<td>C%</td>
</tr>
<tr>
<td></td>
<td>PO₄⁻³ * K⁺ Ca²⁺+Mg²⁺ Al³⁺</td>
</tr>
<tr>
<td>3,7</td>
<td>1,0</td>
</tr>
<tr>
<td>0,45</td>
<td>13,60</td>
</tr>
<tr>
<td>0,0</td>
<td></td>
</tr>
</tbody>
</table>

Segundo o sistema de Koeppen, o clima da região recebe a classificação de Cwa-tropical úmico com inverno seco. A temperatura do mês mais quente é superior a 22°C e a do mês mais frio inferior a 18°C (SETZER, 1946).

O tratamento para quebra de dormência foi feito mergulhando a semente em H₂SO₄ concentrado por 3 minutos, de acordo com Akamine, citado por HILL (1971). Em seguida as mesmas foram inoculadas com inoculantes específicos usando as estirpes: TAL-82 + CIAT-1967 + CB-81. Para cada kg de semente foram utilizados 3,6 g de inóculo e 4,0 g de adesivo, sendo em seguida postas em tambor giratório onde permaneceram em rotação por 24 horas (VALARINO, 1982)*. A semeadura foi procedida em 17/02/1981,

* MARIA J. VALARINI, Instituto de Zootecnia, Nova Odessa SP, Comunicação pessoal.
e as sementes foram cedidas pela Seção de Plantas Forrageiras do Instituto de Zootecnia de Nova Odessa - SP.

Aos 30 dias após a germinação foi feito o primeiro desbaste, deixando uma planta a cada 20 cm, quando foi feita também uma adubação em cobertura. Esta foi feita aos 30, 40 e 60 dias utilizando 40 g de sulfato de amônio por metro linear. Um segundo desbaste foi feito aos 50 dias após a semeadura, deixando uma distância entre plantas de 50 cm.

A irrigação foi feita no sulco, semanalmente, quando necessário.

As coletas foram realizadas a cada 60 dias após a semeadura. As plantas, em número de três, foram cortadas rente ao solo, separadas em folhas e caules, lavadas com água destilada (SARRUGE & HAAG, 1974) e postas a secar em estufa de circulação forçada de ar a 80°C. A matéria seca foi analisada para N, P, K, Ca, Mg e S, segundo recomendações contidas nos autores citados acima.

Cinco gramas de folhas secas e moidas de diferentes idades foram colocadas em sacos de "nylon" de 10 x 15 cm com malha de 100 "mesh" e utilizadas para teste de digestibilidade in vivo. Os sacos foram introduzidos no rúme do animal e permanecendo por 72 horas. Após esse período foram retirados, lavados em água corrente e postos a secar a 105°C durante 24 horas. O peso inicial da amostra foi corrigido para matéria seca a 105°C. Essa diferença seria a matéria seca desaparecida, usada para a estimativa da digestibilidade.

O delineamento utilizado foi inteiramente casualizado com 3 repetições. Análise de variância da concentração e acúmulo de macronutrientes nas folhas e caules, do acúmulo de matéria seca e da concentração de matéria seca digestível nas folhas. Análise de regressão para concentrações de macronutrientes, nas folhas e caules e matéria seca digestível nas folhas em função de épocas, e os respectivos pontos de máximo, mínimo e inflexão. A curva escolhida foi aquela de grau mais elevado, significativo.
RESULTADOS E DISCUSSÃO

Crescimento

Pelos dados expostos na Tabela 1, verificam-se diferenças significativas para folhas, caules e planta inteira em função da idade da planta. A proporção de matéria seca das folhas foi superior ao saule até 180 dias, a partir daí essa tendência se inverteu e mostrou a variação dessa relação com o envelhecimento da planta. Esses dados são importantes para determinar o tipo de material que será oferecido ao animal em determinada época.

Constatou-se um grande aumento do peso da matéria seca do caule entre 300 e 360 dias. A lignificação do material parece ser a explicação para tal fato. A diminuição da digestibilidade aos 360 dias (51,05%), presente na Tabela 14, parece indicar ter ocorrido o mesmo fenômeno nas folhas. Segundo YEO (1977), o coeficiente de digestibilidade da matéria seca é afetado principalmente pelo aumento de lignina nas paredes celulares com o envelhecimento da planta. CRAMPTON & MAYNARD (1938) afirmam que a lignificação altera o valor nutritivo da planta e é consequência da maturidade.

MENDOZA & JAVIER (1980) obtiveram uma produção média de L. leucocephala cv. Peru de 22,27 ton. de matéria seca/ha/ano, enquanto que o presente trabalho apresentou uma produção estimada de 46,37 t/ha/ano. Desse valor em contraste para leucena, as folhas contribuíram com 10,7 t/ha/ano e o caule com 35,66 t/ha/ano. Apesar de se tratar de um arbusto, essa leguminosa é bastante aceita pelo gado, que se alimenta das folhas e talos jovens com diâmetro de 5 a 6 mm. Já os talos mais grossos são menos aceitos e nutritivos que as folhas e talos jovens (JONES, 1979).

Nitrogênio

Os teores de nitrogênio nas folhas e caules acham-
Tabela 1 - Produção de matéria seca em g/planta em função da idade e razão folha/caule.

<table>
<thead>
<tr>
<th>Partes da planta</th>
<th>Idade em dias após germinação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Folhas</td>
<td>9,03</td>
</tr>
<tr>
<td>Caules</td>
<td>6,53</td>
</tr>
<tr>
<td>Planta inteira</td>
<td>15,56</td>
</tr>
<tr>
<td>Folha/caule</td>
<td>1,38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>DMS (Tukey 5%)</th>
<th>C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folhas</td>
<td>58,44**</td>
<td>126,51</td>
<td>25,03</td>
</tr>
<tr>
<td>Caules</td>
<td>598,42**</td>
<td>134,45</td>
<td>12,70</td>
</tr>
<tr>
<td>Planta inteira</td>
<td>302,73**</td>
<td>240,85</td>
<td>15,40</td>
</tr>
</tbody>
</table>

Anais da E.S.A. "Luiz de Queiroz"
se presentes na Tabela 2, e mostraram correlação com a idade. Ambos mostraram que os teores diminuíram linearmente com a idade segundo equações de 1º grau expostas na Tabela 3. Os valores límites calculados entre 50 e 360 dias variaram de 5,00% a 2,96% para as folhas e 2,14% a 0,92% para os caules. GOMIDE (1976) atribui esse decréscimo ao efeito de diluição do nitrogênio na matéria seca (decréscimo da concentração de nitrogênio em função do aumento da matéria seca), diminuição da capacidade da planta em absorver os nutrientes do solo e variação na relação caule-folha.

HAAG & MITIDIERI (1980) obtiveram em folhas de plantas sem deficiência 3,51 g de N e em folhas de plantas com sintomas de deficiência 2,79%. Entretanto a NATIONAL ACADEMY OF SCIENCES (1977) relata uma ampla gama de valores que vão de 2,2% a 4,3% de N em folhas de leucena.

GOMIDE (1976) cita dados de teores de nitrogênio em centrosema (Centrosema pubescens), siratro (Phaseolus macroptilium) e soja perene (Glycine javanica), consorcionados com capim jaraguá (Hypaphenia rufa) como sendo 2,50%, 2,24% e 2,45% de N respectivamente na matéria seca.

OLIVEIRA et alii (1978) não encontraram nos caules de soja perene (Glycine wightii Willd.) e siratro (Macroptilium atropurpureum cv. 'siratro') correlação do teor de nitrogênio com a idade e no caule de centrosema (Centrosema pubescens Benth) os teores do nutriente aumentaram com a idade. As folhas dessas mesmas espécies variaram seus teores de nitrogênio com a idade.

Fósforo

Os teores de fósforo nas folhas e caules encontram-se na Tabela 4 e mostraram correlação com a idade traduzidos por uma equação de regressão quadrática e uma cúbica presentes na Tabela 5.

Nas folhas os valores observados variaram de 0,27% aos 60 dias até 0,11% aos 360 dias. Nos caules essa cor
Tabela 2 - Concentração (%) e acúmulo (g/planta) de nitrogênio nas partes da planta em função de diferentes idades (média de 3 repetições).

<table>
<thead>
<tr>
<th>Partes da planta</th>
<th>60</th>
<th>120</th>
<th>180</th>
<th>240</th>
<th>300</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>g</td>
<td>%</td>
<td>g</td>
<td>%</td>
<td>g</td>
</tr>
<tr>
<td>Folhas</td>
<td>4,96</td>
<td>0,44</td>
<td>4,73</td>
<td>1,97</td>
<td>4,22</td>
<td>4,10</td>
</tr>
<tr>
<td>Caules</td>
<td>1,66</td>
<td>0,10</td>
<td>2,48</td>
<td>0,57</td>
<td>1,76</td>
<td>1,09</td>
</tr>
<tr>
<td>Planta inteira</td>
<td>-</td>
<td>0,55</td>
<td>-</td>
<td>2,64</td>
<td>-</td>
<td>5,20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>DMS (Tukey 5%)</th>
<th>C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Folhas</td>
<td>17,54**</td>
<td>0,87</td>
<td>8,04</td>
</tr>
<tr>
<td>Caules</td>
<td>3,59*</td>
<td>1,43</td>
<td>34,26</td>
</tr>
<tr>
<td>Planta inteira</td>
<td>-</td>
<td>70,79**</td>
<td>-</td>
</tr>
</tbody>
</table>

Anais da E.S.A. 'Luiz de Queiroz'
<table>
<thead>
<tr>
<th>Partes da planta</th>
<th>Equação</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folhas</td>
<td>$Y = 5,415 - 0,00681x$</td>
<td>97,28</td>
</tr>
<tr>
<td>Caules</td>
<td>$Y = 2,384 - 0,00406x$</td>
<td>63,99</td>
</tr>
</tbody>
</table>
Tabela 4 - Concentração (%) e acúmulo (g/planta) de fósforo nas partes da planta em função de diferentes idades (média de 3 repetições).

<table>
<thead>
<tr>
<th>Partes da planta</th>
<th>60</th>
<th>120</th>
<th>180</th>
<th>240</th>
<th>300</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>g</td>
<td>%</td>
<td>g</td>
<td>%</td>
<td>g</td>
</tr>
<tr>
<td>Folhas</td>
<td>0,27</td>
<td>0,01</td>
<td>0,22</td>
<td>0,08</td>
<td>0,13</td>
<td>0,10</td>
</tr>
<tr>
<td>Caules</td>
<td>0,25</td>
<td>0,01</td>
<td>0,16</td>
<td>0,04</td>
<td>0,06</td>
<td>0,03</td>
</tr>
<tr>
<td>Planta inteira</td>
<td>-</td>
<td>0,02</td>
<td>-</td>
<td>0,13</td>
<td>-</td>
<td>0,16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>DMS (Tukey 5%)</th>
<th>C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Folhas</td>
<td>34,05**</td>
<td>0,05</td>
<td>11,64</td>
</tr>
<tr>
<td>Caules</td>
<td>46,74**</td>
<td>0,05</td>
<td>20,47</td>
</tr>
<tr>
<td>Planta</td>
<td>-</td>
<td>50,70**</td>
<td>-</td>
</tr>
</tbody>
</table>
Tabela 5 - Equações de regressão, coeficientes de determinação (R^2) e ponto de mínimo (P_m) do teor de fósforo ($\%P = Y$) em função da idade (X) em partes da planta.

<table>
<thead>
<tr>
<th>Partes da planta</th>
<th>R^2</th>
<th>Máximo</th>
<th>Mínimo</th>
<th>Inflexão</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>Y</td>
<td>X</td>
</tr>
<tr>
<td>Folhas</td>
<td>79,61</td>
<td>286,74</td>
<td>0,12</td>
<td></td>
</tr>
<tr>
<td>Caules</td>
<td>92,78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Y = 0,368 - 0,00172x + 0,00000300x^2$</td>
<td>$Y = 0,484 - 0,00464x + 0,000168x^2 - 0,000000202x^3$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
cenração variou de 0,25% a 0,03% no mesmo período. OLI-
VEIRA et alii (1978) encontraram valores da concentra-
çao de P na parte aérea da centrosema (Centrosema pubes-
cens Benth) variando de 0,25% a 0,35%.

Os dados relatados para as folhas estão abaixo dos
apresentados pela NATIONAL ACADEMY OF SCIENCES (1977), que
apresenta teores de P em folhas secas de leucena varian
do de 0,2% a 0,4%, que coincidem com HAAG & MITIDIERT
(1980), que encontraram 0,40% de P em folhas provenien-
tes de plantas sem deficiência. Esses mesmos autores en-
contraram 0,11 de P nas folhas de plantas com sintomas
de deficiência, valor igual ao encontrado no presente tra-
balho em folhas de plantas com 360 dias de idade. Valo-
res concordantes encontraram D’MELLO & THOMAS (1978) e
ADENEYE (1981) de 0,23% e 0,26% de P respectivamente em
folhas de leucena.

GOMIDE (1976) cita dados de teores de fósforo em
centrosema (Centrosema pubescens), siratro (Phaseolus ma-
croptilium) e soja perene (Glycine javanica) consorciaos
com capim-gordura (Hyparhenia rufa) como sendo 0,10%,
0,09% e 0,10% de P respectivamente na matéria seca.

A NATIONAL ACADEMY OF SCIENCES (1976) afirma que a
exigência de P para o crescimento de bovinos varia de
0,18% a 0,70%, valores bem acima dos encontrados para fo-
lhas de leucena. Isso leva a crer que seria possível o
animal sofrer carência desse elemento caso fosse alimen-
tado somente com folhas dessa leguminosa.

Potássio

Os teores de potássio nas folhas e caules encontram-
se na Tabela 6 e mostraram correlação com a idade
diminuindo segundo equações de regressão lineares presen-
tes na Tabela 7. Os teores foram bastante variáveis com
o aumento da idade da planta provavelmente devido ao fa-
to dessa leguminosa apresentar dois florescimentos ao
ano. Os teores nas folhas foram em média mais altos que
nos caules.
Tabela 6 - Concentração (%) e acúmulo (g/planta) de potássio nas partes da planta em função de diferentes idades (média de 3 repetições).

<table>
<thead>
<tr>
<th>Partes da planta</th>
<th>Idade em dias após germinação</th>
<th>60</th>
<th>120</th>
<th>180</th>
<th>240</th>
<th>300</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>g</td>
<td>%</td>
<td>g</td>
<td>%</td>
<td>g</td>
</tr>
<tr>
<td>Folhas</td>
<td>2,54</td>
<td>0,22</td>
<td>2,96</td>
<td>1,23</td>
<td>2,45</td>
<td>2,35</td>
<td>1,99</td>
</tr>
<tr>
<td>Caules</td>
<td>2,29</td>
<td>0,14</td>
<td>2,55</td>
<td>0,68</td>
<td>1,63</td>
<td>1,02</td>
<td>1,53</td>
</tr>
<tr>
<td>Planta inteira</td>
<td>-</td>
<td>0,37</td>
<td>-</td>
<td>1,96</td>
<td>-</td>
<td>3,37</td>
<td>-</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>%</td>
<td>g</td>
<td>%</td>
<td>g</td>
<td>%</td>
<td>g</td>
</tr>
<tr>
<td>Folhas</td>
<td>25,46**</td>
<td>26,76**</td>
<td>0,46</td>
<td>4,34</td>
<td>6,77</td>
<td>35,27</td>
<td></td>
</tr>
<tr>
<td>Caules</td>
<td>8,24**</td>
<td>50,48**</td>
<td>0,93</td>
<td>5,22</td>
<td>17,72</td>
<td>36,73</td>
<td></td>
</tr>
<tr>
<td>Planta inteira</td>
<td>-</td>
<td>49,11**</td>
<td>-</td>
<td>8,32</td>
<td>-</td>
<td>30,24</td>
<td></td>
</tr>
</tbody>
</table>

DMS (Tukey 5%)

C.V.
Tabela 7 - Equações de regressão e coeficientes de determinação (R^2) do teor de potássio ($\%K = Y$) em função da idade (X) em partes da planta.

<table>
<thead>
<tr>
<th>Partes da planta</th>
<th>Equação</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folhas</td>
<td>$Y = 2,775 - 0,00119x$</td>
<td>37,19</td>
</tr>
<tr>
<td>Caules</td>
<td>$Y = 2,556 - 0,00300x$</td>
<td>35,44</td>
</tr>
</tbody>
</table>
O teor mínimo observado nas folhas foi de 1,99% aos 240 e 360 dias e o máximo de 3,21% aos 300 dias, dentro dessa variação está o valor de 2,75% de K obtido por HAAG & MITIDIERI (1980) em folhas de leucena obtidas de plantas sem deficiência. Entretanto a NATIONAL ACADEMY OF SCIENCES (1977) relata que folhas secas de leucena podem apresentar teores que variam de 1,3% a 4,0%.

GOMIDE (1976) apresenta teores de potássio presentes em centrosema (Centrosema pubescens), siratro (Phaseolus macroptilium) e soja perene (Glycine javanica) consorciados com capim-jaraguá (Hypaphenia rufo) como sendo 1,34%, 1,66% e 2,06% respectivamente na matéria seca.

OLIVEIRA et alii (1978) encontraram em folhas de siratro (Macroptilium atropurpureum cv. 'siratro') teores do nutriente sempre crescente de 1,49% a 5,09% no período de 21 a 147 dias.

A NATIONAL ACADEMY OF SCIENCES (1976) afirma que a exigência de potássio para o crescimento de bovinos variaria de 0,60% a 0,80%, valores plenamente satisfeitos pelas folhas da planta em estudo. GALLO et alii (1974), estudando a composição de 14 gramíneas e 23 leguminosas forrageiras, coletadas no Estado de São Paulo, num total de 249 amostras, observaram que não houve uma só amostra dentre todas as analisadas com teor de K abaixo de 0,60%, mínimo adequado para bovinos. No pasto, o teor desse elemento em todas as forrageiras esteve acima de 0,80%.

Cálcio

Os teores de cálcio nas folhas e caules encontram-se na Tabela 8, sendo que somente as folhas mostraram correlação com a idade traduzida por uma equação de regressão cúbica presente na Tabela 9.

As folhas apresentaram um teor calculado máximo de 1,76% aos 139 dias e um teor mínimo de 1,27% aos 297 dias, valores próximos aos observados aos 120 e 300 dias. Os dados acham-se na faixa de variação de 0,80% a 2,00%
Tabela 8 - Concentração (%) e acúmulo (g/planta) de cálcio nas partes da planta em função de diferentes idades (média de 3 repetições).

<table>
<thead>
<tr>
<th>Partes da planta</th>
<th>Idade em dias após germinação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Folhas</td>
<td>1,25</td>
</tr>
<tr>
<td>Caules</td>
<td>0,63</td>
</tr>
<tr>
<td>Planta inteira</td>
<td>0,14</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Folhas</td>
<td>5,06**</td>
</tr>
<tr>
<td>Caules</td>
<td>2,54</td>
</tr>
<tr>
<td>Planta inteira</td>
<td>2,54</td>
</tr>
</tbody>
</table>

Anais da E.S.A. "Luiz de Queiroz"

OLIVEIRA et alii (1978) encontraram aos 63 dias de idade para folhas de soja perene (*Glycine wightii* Willd.) um teor de 1,02% de Ca e em folhas de siratro (*Macroptilium atropurpureum* cv. 'siratro') 1,36% de Ca na mesma época. No presente estudo o valor observado aos 60 dias foi de 1,25% de Ca.

Para Norris, citado por GOMIDE (1976), as leguminosas tropicais são capazes de absorver cálcio do solo com grande facilidade. Tanto que o mesmo autor apresenta teores de cálcio para capim-elefante (*Pennisetum purpureum*) de 0,43% aos 140 dias de idade e de 0,66% para o capim-pangola (*Digitaria decumbens*) da mesma idade. Esse mesmo autor apresenta dados de concentração de cálcio em centrosema (*Centrosema pubescens*), siratro (*Phaseolus macroptilium*) e soja perene (*Glycine javanica*), consorciados com capim-jaraguá (*Hyoarhenia rufa*) como sendo 1,36%, 1,13% e 1,29% respectivamente na matéria seca.

GALLO et alii (1974), estudando a composição de 23 leguminosas e 14 gramíneas forrageiras, num total de 249 amostras, observaram que de todas as amostras analisadas 84% continham um teor de cálcio acima de 0,80%.

A NATIONAL ACADEMY OF SCIENCES (1976) afirma que a exigência de cálcio para o crescimento de bovinos varia de 0,18% a 1,04%, teores amplamente satisfeitos nas folhas de leucena.

Magnésio

Os teores de magnésio nas folhas e caules encontram-se na Tabela 10 e mostraram correlação com a idade traduzidos por equações de regressão cúbica presentes na Tabela 11.

As folhas apresentaram um teor máximo calculado de
Tabela 9 - Equação de regressão, coeficiente de determinação (R^2), ponto de máximo (PM), ponto de mínimo (Pm) e ponto de inflexão (PI) do teor de cálcio (% Ca = Y) em função da idade (X) em partes da planta.

<table>
<thead>
<tr>
<th>Partes da planta</th>
<th>R2</th>
<th>Máximo X</th>
<th>Máximo Y</th>
<th>Mínimo X</th>
<th>Mínimo Y</th>
<th>Inflexão X</th>
<th>Inflexão Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folhas</td>
<td></td>
<td>43,71</td>
<td>139,82</td>
<td>297,82</td>
<td>1,27</td>
<td>218,82</td>
<td>1,51</td>
</tr>
<tr>
<td>Caules</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n.s. até 3º grau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n.s. = valor de F não significativo ao nível de 5% de probabilidade.
Tabela 10 - Concentração (%) e acúmulo (g/planta) de magnésio nas partes da planta em função de diferentes idades (média de 3 repetições).

<table>
<thead>
<tr>
<th>Partes da planta</th>
<th>Idade em dias após germinação</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
<td>120</td>
<td>180</td>
<td>240</td>
<td>300</td>
<td>360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>g</td>
<td>%</td>
<td>g</td>
<td>%</td>
<td>g</td>
<td>%</td>
<td>g</td>
<td>%</td>
<td>g</td>
<td>%</td>
</tr>
<tr>
<td>Folhas</td>
<td>0,26</td>
<td>0,02</td>
<td>0,28</td>
<td>0,11</td>
<td>0,28</td>
<td>0,26</td>
<td>0,27</td>
<td>0,27</td>
<td>0,99</td>
<td>0,99</td>
<td>0,29</td>
</tr>
<tr>
<td>Caules</td>
<td>0,22</td>
<td>0,01</td>
<td>0,24</td>
<td>0,05</td>
<td>0,24</td>
<td>0,14</td>
<td>0,18</td>
<td>0,25</td>
<td>0,16</td>
<td>0,25</td>
<td>0,18</td>
</tr>
<tr>
<td>Planta inteira</td>
<td>-</td>
<td>0,03</td>
<td>-</td>
<td>0,17</td>
<td>-</td>
<td>0,41</td>
<td>-</td>
<td>0,54</td>
<td>-</td>
<td>1,52</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>DMS (Tukey 5%)</th>
<th>C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>g</td>
<td>%</td>
</tr>
<tr>
<td>Folhas</td>
<td>36,76**</td>
<td>71,78**</td>
<td>0,22</td>
</tr>
<tr>
<td>Caules</td>
<td>7,90**</td>
<td>38,21**</td>
<td>0,05</td>
</tr>
<tr>
<td>Planta inteira</td>
<td>-</td>
<td>291,60**</td>
<td>-</td>
</tr>
</tbody>
</table>

Volume XXXIX - 1982
Tabela 11 - Equações de regressão, coeficientes de determinação (R^2), ponto de máximo (PM), ponto de mínimo (Pm) e ponto de inflexão (PI) do teor de magnésio ($\%$Mg = Y) em função da idade (X) em partes da planta.

<table>
<thead>
<tr>
<th>Partes da planta</th>
<th>R^2</th>
<th>Máximo</th>
<th>Mínimo</th>
<th>Inflexão</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>Y</td>
<td>X</td>
</tr>
<tr>
<td>Folhas</td>
<td>47,32</td>
<td>293,05</td>
<td>0,69</td>
<td>115,86</td>
</tr>
<tr>
<td>$Y = 1,173 - 0,0208x + 0,000125x^2 - 0,000000204x^3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caules</td>
<td>95,41</td>
<td>118,48</td>
<td>0,25</td>
<td>311,91</td>
</tr>
<tr>
<td>$Y = 0,108 + 0,00282x - 0,0000164x^2 + 0,0000000254x^3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
0,69% aos 293 dias e um teor mínimo de 0,12% aos 115 dias. Os caules apresentaram um teor máximo de 0,25% aos 118 dias e um teor mínimo de 0,16% aos 312 dias.

Observa-se que a concentração nas folhas variou muito pouco com a idade com exceção do valor observado aos 300 dias (0,99%). O mesmo foi observado por JOHANSEN (1976) em siratro (Macroptilium atropurpureum cv. 'siratro') ao passo que em alfafa (Medicago sativa) e trevo (Trifolium repens) a concentração tende a aumentar com a idade da folha.

OLIVEIRA et alii (1978) encontraram aos 60 dias de idade um valor de 0,23% de magnésio em folhas de soja perene (Glycine wightii Willd.) e no caule 0,20%. No presente estudo os valores observados para as folhas foram 0,26% e para o caule 0,22% de Mg na mesma idade, abaixo do valor encontrado por HAAG & MITIDIERI (1980) de 0,42% em folhas obtidas de plantas sem deficiência.

GALLO et alii (1974), estudando a composição de 23 leguminosas e 14 gramíneas forrageiras, num total de 249 amostras, observaram que em 86% das leguminosas os teores de magnésio estiveram acima de 0,26%.

Segundo Nelson, citado por VIANA (1976) e GOMIDE (1976), as leguminosas geralmente são mais ricas em magnésio que as gramíneas.

A NATIONAL ACADEMY OF SCIENCES (1976) afirma que a exigência de magnésio para o crescimento de bovinos varia de 0,04% a 0,10%. Portanto é pouco provável que o animal sofra de deficiência desse elemento visto que quase não existe forragem com menos de 0,1% (ALBA, 1971).

Enxofre

Os teores de enxofre nas folhas e caules encontram-se na Tabela 12 e mostraram correlação com a idade segundo equações de regressão quadrática presentes na Tabela 13. Os teores nas folhas foram em média maiores que os dos caules.
Tabela 12 - Concentração (%) e acúmulo (g/planta) de enxofre nas partes da planta em função de diferentes idades (média de 3 repetições).

<table>
<thead>
<tr>
<th>Partes da planta</th>
<th>Idade em dias após germinação</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
<td>120</td>
<td>180</td>
<td>240</td>
<td>300</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>g</td>
<td>%</td>
<td>g</td>
<td>%</td>
<td>g</td>
<td>%</td>
</tr>
<tr>
<td>Folhas</td>
<td>0,27</td>
<td>0,02</td>
<td>0,25</td>
<td>0,10</td>
<td>0,32</td>
<td>0,30</td>
<td>0,18</td>
</tr>
</tbody>
</table>
O teor máximo calculado de enxofre nas folhas foi 0,27% aos 115 dias, valor bem próximo do observado aos 120 dias de idade da planta, e para o caule foi de 0,16% aos 156 dias. HAAG & MITIDIERI (1980) obtiveram 0,22% e 0 em folhas provenientes de plantas sem deficiência.

OLIVEIRA et alii (1978) obtiveram uma concentração de enxofre nas folhas de siratro (Macroptilium atropurpureum cv. 'siratro') aos 66 dias de 0,23% e no caule 0,24% na mesma idade. O valor calculado para folhas de leucena em plantas da mesma idade foi de 0,28% e para os caules 0,15%.

A exata quantidade de enxofre necessária aos bovinos não é conhecida, mas tem sido estimada ser menor que 0,10% na matéria seca, assim sendo folhas de leucena poderiam supriri-la satisfatoriamente.

Matéria seca digestível

Os valores da porcentagem da matéria seca digestível das folhas em diferentes idades da planta acham-se expostos na Tabela 14 e mostram que houve diferença significativa das épocas nos teores digestíveis das folhas, que se adaptaram a uma equação de regressão cúbica presente na Tabela 15. A digestibilidade em função da idade apresenta um valor mínimo de 61,83% aos 175 dias de idade e um máximo de 65,39% aos 275 dias, valor este próximo daquele obtido por LIMA & SOUTO (1972) de 69,39% em feno de soja perene (Glycine max Willd.) obtido de plantas de mesma idade.

A tendência decrescente que apresentam as folhas até os 240 dias sofreu um acréscimo aos 300 dias. O fenômeno é explicado pelo aparecimento de material vegetal novo logo antes do segundo florescimento aos 360 dias.

OLIVEIRA et alii (1978) encontraram para folhas de centrosema (Centrosema pubescens Benth) e siratro (Macroptilium atropurpureum cv. 'siratro') teores digestíveis crescentes com a idade. Obtiveram 34% de matéria
Tabela 13 - Equações de regressão, coeficientes de determinação (R^2) e ponto de máximo (PM) do teor de enxofre (%$S = Y$) em função da idade (X) em partes da planta.

<table>
<thead>
<tr>
<th>Partes da planta</th>
<th>Equação</th>
<th>R^2</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folhas</td>
<td>$Y = 0,238+0,000693x-0,00000299x^2$</td>
<td>78,08</td>
<td>115,85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caules</td>
<td>$Y = 0,103+0,000751c-0,00000299x^2$</td>
<td>75,23</td>
<td>156,70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabela 14 - Concentração (%) e acúmulo (g/planta) de enxofre nas partes da planta em função de diferentes idades (média de 3 repetições).

<table>
<thead>
<tr>
<th>Partes da planta</th>
<th>Idade em dias após germinação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Folhas</td>
<td>0,27</td>
</tr>
<tr>
<td></td>
<td>0,18</td>
</tr>
<tr>
<td>Caules</td>
<td>0,12</td>
</tr>
<tr>
<td></td>
<td>0,11</td>
</tr>
<tr>
<td>Planta inteira</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>0,37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>DMS (Tukey 5%)</th>
<th>C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Folhas</td>
<td>24,38**</td>
<td>9,47**</td>
<td>0,07</td>
</tr>
<tr>
<td>Caules</td>
<td>4,17*</td>
<td>80,43**</td>
<td>0,09</td>
</tr>
<tr>
<td>Planta inteira</td>
<td>-</td>
<td>22,64**</td>
<td>-</td>
</tr>
</tbody>
</table>
seca digestível aos 147 dias para a primeira e 55,50% para a segunda. Também ocorreram para soja perene (*Glycine wightii* Willd.) um valor de 58,81% na mesma idade. Para o valor calculado aos 147 dias foi de 63,10%.

PEIXOTO et alii (1965), pesquisando o feno de soja perene (*Glycine wightii* Willd.) em plantas cortadas aos 90 dias de crescimento vegetativo encontraram coeficiente de digestibilidade de 75,38% na fração matéria seca. PEIXOTO et alii (1967) encontraram 54,36% em feno de siratro (*Macroptilium atropurpureum* cv. 'siratro').

O alto teor de digestibilidade mantido até o final do experimento comprova o que foi afirmado por Siewerdt, citado por GRIPP (1970), que diz manterem as leguminosas tropicais alto teor de digestibilidade da matéria seca com o avanço da maturidade da planta. Tanto que KHARAT et alii (1980), trabalhando com plantas de leucena com um ano de idade, encontraram coeficientes de digestibilidade da matéria seca variando de 56,60% a 61,20%, valores acima do observado no presente trabalho (51,05%) em folhas com a mesma idade.

CONCLUSÕES

a) A produção de matéria seca é máxima aos 360 dias de idade da planta;

b) o maior incremento na produção de folhas, expresso em matéria seca, se dá aos 240 aos 360 dias de idade da planta;

c) As concentrações de nitrogênio e potássio diminuem nas folhas e caules com a idade da planta;

d) A concentração de cálcio no caule não é afetada com a idade;

e) As folhas aos 360 dias, época de produção máxima.
ma de matéria seca (535,46 g/planta) contém:
16,26 g de nitrogênio; 0,61 g de fósforo; 10,65
g de potássio; 8,08 g de cálcio; 1,58 g de mag
eúrien e 0,51 g de enxofre;

g) O acúmulo de macronutrientes na planta aos 360
dias obedece a seguinte ordem: N > K > Ca > Mg >
> S > P.

h) Aos 360 dias a matéria seca digestível das fo-
lhas é 51,05%.

SUMMARY

MINERAL NUTRITION OF TROPICAL LEGUMES. III.
CONCENTRATION AND ACCUMULATION OF MACRONUTRIENTS
AND DRY MATTER DIGESTIBILITY "IN VIVO" OF
Leucaena leucocephala (LAM.) DE WIT CV. PERU
DURING A ONE YEAR PERIOD.

The tropical leguminous plants are known as a high
quality protein source and in some cases even as wood
producers when dealing with the arbustive types.

The leucena (Leucaena leucocephala (Lam.) de Wit
cv. Peru) was noticed as a very promising species to the
Brazilian cattle production, and this fact leads to the
setting of a field experiment in order to know its nu-
trient demands.

The experiment was carried out to obtain data for
analysis of growth, concentration and extraction of ma-
cronutrients (N, P, K, Ca, Mg, S and the dry matter
digestibility in vivo for the leaves related to the
plant age.

From the obtained data it was possible to verify that:

The whole dry matter production is the highest when
the plant was 360 days old. The largest increase in the
leaf production in dry matter was observed from 240 days up to 360 days.

The N and P concentrations decreased in leaves and stem along the plant life.

On the other hand, the age of the plant did not affect the Ca concentration in the stem leaves not the Ca concentration in the stem.

When the plants were 360 days old corresponding to the highest dry matter production period, the following contents in the leaves and stem were observed:

<table>
<thead>
<tr>
<th>Element</th>
<th>Leaves (535.46 g/plant)</th>
<th>Stem (1,783.33 g/plant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>16.26 g</td>
<td>15.82 g</td>
</tr>
<tr>
<td>P</td>
<td>0.61</td>
<td>0.65</td>
</tr>
<tr>
<td>K</td>
<td>10.65</td>
<td>20.37</td>
</tr>
<tr>
<td>Ca</td>
<td>8.08</td>
<td>7.01</td>
</tr>
<tr>
<td>Mg</td>
<td>1.58</td>
<td>0.44</td>
</tr>
<tr>
<td>S</td>
<td>0.51</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Plants with 360 days also showed the macronutrients accumulations in the following order: N > K > Ca > Mg > S > P.

The digestibility of the dry matter in leaves is in the level of 51.05%, in 360 day old plants.

LITERATURA CITADA

VILELA, E., 1976. Efeitos de densidades de semeadura e níveis de adubação nitrogenada no estabelecimento de *Leucaena leucocephala* (Lam.) de Wit., Piracicaba, ESALQ/USP (Dissertação de Mestrado).