INTRODUCTION

Esophageal cancer (EC) is among the ten most common cancer worldwide and it is one of the leading causes of mortality among the neoplasms that affect the gastrointestinal tract. During the last four decades, the incidence of EC increased significantly. In Brazil, for instance, it is the 6th most frequent cancer in men and 15th in women. In the year of 2014, 10,780 new cases of EC were diagnosed in Brazil and, in 2011, it was responsible for 7,636 deaths. Even though the survival rate for patients with EC has improved over the decades, it is still very poor, for curative treatment is only destined to patients with early or, at most, locally advanced disease.

Over the world, but most importantly in Western Europe and North America, it has been observed a higher incidence of esophageal adenocarcinoma (EA), in comparison with squamous cell carcinoma (SCC), which is possibly due to the increase of obesity and gastroesophageal reflux (GERD) incidence in those regions. Even so, SCC still accounts for about 90% of cases of EC worldwide. In Brazil, where SCC is also predominant, corresponding to 96% of all EC cases, it has also been noticed an increasing incidence of esophageal adenocarcinoma.

An important characteristic of esophageal cancer is its strong association with known risk factors, for example alcoholism, tabagism, Barrett esophagus (BE) and human papiloma virus infection. Also, a marked characteristic of EC is its heterogenic incidence, higher in Asian countries and a milder incidence in European and American countries. A great diversity is also observed in Brazil, with four cases in every 100 thousand inhabitants in the North of the country and 15 cases for the same size population in the South.
Given the important participation of esophageal cancer in incidence and mortality rates and the observed changes regarding the prevalence of EA, this study aims to describe both clinically and epidemiologically the population of patients with diagnosis of EC treated in a quaternary attention institute for cancer from January, 2009 to December, 2011, in Sao Paulo, Brazil, in order to establish a profile of these patients and compare it with data of other services.

METHODS

The charts of all patients diagnosed with esophageal cancer from January, 2009, to December, 2011, in a Sao Paulo (Brazil) quaternary oncology institute (ICESP - Instituto do Cancer do Estado de Sao Paulo) were retrospectively reviewed.

Patients were analyzed according to demographic aspects (gender, age, age of diagnosis, body mass index, ethnicity and performance status), known risk factors (alcoholism, smoking, Barrett esophagus, achalasia), associated diseases and neoplasms, localization of the tumor, histologic type, staging, treatment, complications and survival.

The population studied was composed of 565 individuals (n=565), of which 20.7% were female and 79.3% male. The age at diagnosis ranged from 32 to 94 years old.

Regarding statistical analysis, for contingency tables, a Fisher exact test was used; to compare independent means, Student-t test was employed.

RESULTS

Among all patients (n=565), 105 (19.13%) had the diagnosis of adenocarcinoma, 444 (80.87%) had squamous cell carcinoma, and 16 (2.83%) had other esophageal neoplasms, such as neuroendocrine or gastrointestinal stromal tumors.

The mean time between first symptoms and diagnostic was 4.31±2.85 months and the mean time to initiate treatment was 4.01±3.12 months.

Comparing gender prevalence between EA and SCC, there were no significant differences – both affect predominantly males, who represented 78.4% of patients with EA and 82.9% of patients with SCC (P=0.351).

Racial distribution of incidence is illustrated in Figures 1 and 2, both showing a prevalence of Caucasian patients in both subtypes of EC. Statistical analysis of this distribution showed that EA affects Caucasians in a significantly higher proportion than black, Asian or grayish brown patients (P=0.01).

Average age at the diagnosis was 60.66 years old (StDev 9.73 years old) for SCC and 62.46 years old (StDev 13.03 years old) for EA, with no statistic difference (P=0.213). Average time from the beginning of symptoms to the diagnosis was 3.52 (StDev 2.39) months for EA and 4.2 (StDev 3.04) months for SCC (P-value for the difference=0.036). Average time for initiating treatment when esophageal cancer is diagnosed is 4 (StDev 2.42) months for EA and 4.42 (StDev 2.96) months for SCC (P-value for the difference=0.22).

Initial clinical stage is seen in Figures 3 and 4, showing a predominance of advanced stages at diagnosis (IIIC and IV) in more than half of the cases, in both EA and SCC.

Body mass index (BMI) at the time of diagnosis and weight loss after beginning of symptoms are described in Table 1. Adenocarcinoma patients had a higher BMI at diagnosis, but SCC patients had a higher weight loss.

Status performance at the diagnosis was evaluated by ECOG and Karnofsky (KPS) functional evaluation, with no significant difference of performance status among patients with EA and SCC.

Regarding associated neoplasms, 18.4% of patients diagnosed with EA had an associated neoplasm - previous, posterior or synchronic to the EC, 42.1% of which were synchronic. For SCC, however, only 12.4% had associated neoplasm, 42.6% of which were synchronic. As seen in Table 2, the neoplasms associated with SCC were predominantly head and neck tumors.
Familiar oncologic past was also investigated (see Table 3), but only family history of colorectal cancer was statistically associated with higher incidence in EA.

Habits and addictions were also evaluated. Alcoholism and smoking were more prevalent among SCC patients in comparison with EA patients ($P<0.05$). The mean smoking load (packs per day multiplied by years smoking) was 20.89 (SE mean 3.4) for EA patients and 45.27 (SE mean 3.96) for SCC patients.

Presence of known association with non-oncologic diseases is described in Table 4, showing that Barrett esophagus and Gastroesophageal Reflux Disease (GERD) are more frequent in EA patients. On the other hand, chronic obstructive pulmonary disease (COPD) is more common in SCC patients.

The survival rate of patients with EA was of 13.2 months (\pmStDev 10.2 months) and of 14 months (\pmStDev 11.2 months) for patients with SCC, with no significant difference between them.

TABLE 3. Familial oncological past. History of colorectal tumors in the family is more common in esophageal adenocarcinoma patients

<table>
<thead>
<tr>
<th>Familial oncological past</th>
<th>EA - At least one first degree family member with neoplasm (%)</th>
<th>SCC - At least one first degree family member with neoplasm (%)</th>
<th>P-value for the difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorectal cancer</td>
<td>6</td>
<td>2</td>
<td>0.031</td>
</tr>
<tr>
<td>Gastric adenocarcinoma</td>
<td>3</td>
<td>2</td>
<td>0.203</td>
</tr>
<tr>
<td>Esophageal cancer</td>
<td>3</td>
<td>2</td>
<td>0.100</td>
</tr>
<tr>
<td>Prostate cancer</td>
<td>5</td>
<td>2</td>
<td>0.353</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>7</td>
<td>4</td>
<td>0.227</td>
</tr>
<tr>
<td>Head and neck cancer</td>
<td>3</td>
<td>5</td>
<td>0.386</td>
</tr>
<tr>
<td>Cervical cancer</td>
<td>3</td>
<td>1</td>
<td>0.246</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>6</td>
<td>3</td>
<td>0.172</td>
</tr>
</tbody>
</table>
The main causes of death and main complications associated with EC were also studied and are described in Tables 5 and 6, respectively. Tumoral bleeding and pneumonia were the leading causes of death for both EA and SCC patients, even though tumoral bleeding, tracheoesophageal fistula and pulmonary abscess/pleura empyema are far more often in SCC.

The association between SCC and smoking and alcoholism found in this study is consistent with literature. Also, the association of SCC with head and neck tumors, found in the present study, is well reported in other researches and is probably related to the fact that exposition to tobacco and alcohol is present in most patients with those diseases.

An interesting finding of this study, which does not correlate with current worldwide data is the higher incidence of EC among white males. Most of the information available today shows a higher incidence among Afro-descendants. However, in this study, the vast majority of patients were male Caucasians, with statistically relevance in patients with EA, in special. This may be due to the higher number of white people in Sao Paulo than other Brazilian places.
Regarding associated neoplasms, meanwhile SCC is known to be frequently associated with oropharyngeal tumors (probably because of field cancerization), it seems that EA is associated with gastric adenocarcinoma – the incidence of gastric adenocarcinoma in patients with EA was 500:10 000 and in the general Brazilian population it is about 1:10 000. This finding is also in accordance with literature4,10.

In this study, familial history of esophageal cancer did not correlate to increased risk of EC. However, familial history of colorectal cancer was associated with higher risk of esophageal adenocarcinoma. No conclusive studies about familial past and esophageal cancer have been performed so far. There are some researches, though, that suggest possible association between Barrett esophagus with colorectal cancer, but the mechanism by which this occurs is not well established yet14,15.

Another important finding of this study is the long time for diagnosing the cancer. It was noted that the time between first symptoms and diagnosis is even longer for SCC. That leads to more advanced stages at diagnosis, and, added to another long period until starting treatment in Brazil, hinders the patients’ chances of curative treatment.

CONCLUSION

Each population has its demographic features in esophageal cancer, due to each particularity in population habits and genetics. Adenocarcinoma and squamous cell carcinoma are indeed different diseases, from epidemiological features to biological behavior. Nevertheless, Brazilian late diagnosis and delay in starting treatment are factors that contribute to the high incidence of advanced stages for both diseases. More effort should be made in order to earlier diagnose and initiate treatment of these patients so that their prognosis can be improved.

Authors’ contributions

REFERENCES