Residual gastric volume evaluation with ultrasonography after ingestion of carbohydrate- or carbohydrate plus glutamine-enriched beverages: a randomized, crossover clinical trial with healthy volunteers

Paulo Cesar GOMES, Cervantes CAPOROSSI, Jose Eduardo AGUILAR-NASCIMENTO, Ageo Mario Candido da SILVA and Viviane Maeve Tavares de ARAUJO*

ABSTRACT – Background – Abbreviation of preoperative fasting to 2 hours with maltodextrin (CHO)-enriched beverage is a safe procedure and may enhance postoperative recovery. Addition of glutamine (GLN) to CHO beverages may include potential benefits to the metabolism. However, by adding a nitrogenous source to CHO beverages, gastric emptying may be delayed and increase the risk of bronchoaspiration during anesthesia. Objective – In this study of safety, we aimed at investigating the residual gastric volume (RGV) 2 hours after the intake of either CHO beverage alone or CHO beverage combined with GLN. Methods – We performed a randomized, crossover clinical trial. We assessed RGV by means of abdominal ultrasonography (US) in 20 healthy volunteers (10 males and 10 females) after an overnight fast of 8 hours. Then, they were randomized to receive 600 mL (400 mL immediately after US followed by another 200 mL 2 hours afterwards) of either CHO (12.5% maltodextrin) or CHO-GLN (12.5% maltodextrin plus 15 g GLN). Two sequential US evaluations were done at 120 and 180 minutes after ingestion of the second dose. The interval of time between ingestion of the two types of beverages was 2 weeks. Results – The mean (SD) RGV observed after 8 hours fasting (13.56±13.25 mL) did not statistically differ (P>0.05) from the RGV observed after ingesting CHO beverage at both 120 (16.32±11.78 mL) and 180 minutes (14.60±10.39 mL). The RGV obtained at 120 (15.63±18.83 mL) and 180 (13.65±10.27 mL) minutes after CHO-GLN beverage also was not significantly different from the fasting condition. Conclusion – The RGV at 120 and 180 minutes after ingestion of CHO beverage combined with GLN is similar to that observed after an overnight fast.

INTRODUCTION

A strong emphasis has been given to perioperative care to improve postoperative recovery. Addition of glutamine (GLN) to CHO beverages may include potential benefits to the metabolism. However, by adding a nitrogenous source to CHO beverages, gastric emptying may be delayed and increase the risk of bronchoaspiration during anesthesia. Additionally, glutamine is a precursor of glutathione, which is an important endogenous antioxidant. The addition of glutamine to the CHO-enriched beverage enhances its nutritional and biochemical activity and boosts the patient’s immune response. However, the potential consequences of adding glutamine to the CHO-enriched beverage given 2 hours before anesthesia in order to enhance preoperative metabolism are not completely known, especially whether or not it alters the ability of gastric emptying. For instance, would the new formula increase the residual gastric volume 2 hours after ingestion and increase the risk of aspiration during the induction of anesthesia? This important question requires an answer.

The measuring of residual gastric volume has traditionally been done with manual aspiration of gastric residues with the aid of a syringe connected to a catheter positioned in the stomach. However, imaging tools also can be used to estimate the volume of...
Residual gastric volume evaluation with ultrasonography after ingestion of carbohydrate- or carbohydrate plus glutamine-enriched beverages: a randomized, crossover clinical trial with healthy volunteers

Gomes PC, Caporossi C, Aguilar-Nascimento JE, Silva AMC, Araujo VMT. Residual gastric volume evaluation with ultrasonography after ingestion of carbohydrate- or carbohydrate plus glutamine-enriched beverages: a randomized, crossover clinical trial with healthy volunteers.

Methods

This was a randomized, crossover clinical trial, registered under protocol number 972/CEP – HUJM/2010, and approved by the Research Ethics Committee (CEP) of Julio Muller University Hospital (HUJM), Cuiabá, Brazil.

Echographic ultrasound examinations were performed at the Institute for Diagnostic Imaging of Santa Rosa Hospital (IMEDI) in Cuiabá, Mato Grosso. Study participants were randomly chosen among IMEDI adult volunteers.

Eligibility criteria to participate in this study were: healthy volunteers aged between 18 and 40 years, body mass index ranging between 20 and 29 kg/m², and ability to understand and adhere to the study protocol. Pregnant women or individuals with diabetes mellitus, previous history of esophagus or stomach surgery, or gastroesophageal reflux disease were excluded. Our goal was to obtain a sample of healthy individuals in order to minimize the presence of factors that could affect the results.

A total of 20 subjects (10 males and 10 females) participated in this study. Two collaborators were responsible for study randomization, scheduling the exams, preparation of beverages, providing the beverages to individuals, and recording the data. Sachets containing 12.5% maltodextrin (CHO) or 12.5% maltodextrin plus 15 g glutamine (CHO+GLN) were prepared and diluted in 400 or 200 mL water. Participants drank the solutions 4 hours (400 mL) and 2 hours (200 mL) before the scheduled time for echographic ultrasound evaluation. Table 1 shows the composition and characteristics of the solutions prepared. Two volunteers dropped out due to lack of compliance with the protocol, and four volunteers dropped out because of the taste of the solution. Another volunteer dropped out because of the taste of the solution. Other volunteers were recruited to complete the groups.

TABLE 1. Composition of oral solutions ingested by volunteers

<table>
<thead>
<tr>
<th>Solution</th>
<th>Volume (mL)</th>
<th>Calories (kcal)</th>
<th>Maltodextrin (g)</th>
<th>Glutamine (g)</th>
<th>pH</th>
<th>Density (g/mL)</th>
<th>Osmolarity (mOsm/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maltodextrin</td>
<td>400</td>
<td>200</td>
<td>100</td>
<td>0</td>
<td>4.85</td>
<td>4.85</td>
<td>232</td>
</tr>
<tr>
<td>Maltodextrin + Glutamine</td>
<td>400</td>
<td>200</td>
<td>260</td>
<td>15</td>
<td>5.2</td>
<td>5.2</td>
<td>315</td>
</tr>
</tbody>
</table>

FIGURE 1. Design of the study. TCHO, 12.5% maltodextrin solution; TCHO+GLN, 12.5% maltodextrin plus 15 g glutamine solution; Tfasting, data collected after 8 hour fast; T120CHO and T180CHO (evaluation sequence at 120 and 180 minutes after ingestion of 12.5% maltodextrin solution); and T120CHO+GLN and T180CHO+GLN (evaluation sequence at 120 and 180 minutes after ingestion of 12.5% maltodextrin solution plus 15 g glutamine) (Figure 1).

FIGURE 2. Ultrasound images showing the gastric antrum and methodology for calculation of the residual gastric volume.

The measuring of residual gastric volume was performed at three time points for each volunteer. The first ultrasound evaluation was recorded after 8 hours overnight fasting. Just after the ultrasound evaluation, the volunteer drank 400 mL of a beverage containing one of the two-tested solutions (CHO or CHO-GLN). Two hours after having ingested the beverage he drank another 200 mL of the same solution (CHO or CHO-GLN). A second and a third ultrasound evaluation was done at 120 and 180 minutes after drinking the second dose. The volunteers of this crossover study were given the solutions for ingestion (CHO or CHO+GLN) at randomly times so that the intervals between assessments were two weeks apart for each participant. The residual gastric volume after 8 hours of fasting was measured twice (for each different beverage he drank) for each participant. For statistical purposes the lowest value of the two measurements was discarded.

Data were registered and filed under the following labels: Tfasting (data collected after 8 hour fast); T120CHO and T180CHO (evaluation sequence at 120 and 180 minutes after ingestion of 12.5% maltodextrin solution); and T120CHO+GLN and T180CHO+GLN (evaluation sequence at 120 and 180 minutes after ingestion of 12.5% maltodextrin solution plus 15 g glutamine) (Figure 1).

Residual gastric volume assessment was performed using a Philips model Envisor C HD ultrasound device; all exams were done by the same physician. Participants were positioned in the right lateral decubitus position for 5 minutes, and then an echographic ultrasound examination was done to capture frozen cross-sectional and longitudinal images of the gastric antrum. The antral residual gastric volume was then calculated using a formula to assess the volume of an ellipsoid cavity (longitudinal diameter x transverse diameter x anteroposterior diameter x 0.52). Echographic evaluation of the gastric body and fundus was always performed to assure that all liquid content had flowed into the antral area. Figure 2 shows one example of the echographic image obtained.
Data were analyzed with SPSS version 18.0. Analysis of variance (ANOVA) was used to compare residual gastric volumes. Microsoft Excel and SPSS were used to analyze all data. The 5% level (P<0.05) was established as statistically significant.

RESULTS

Demographic data are shown in Table 2. Mean residual gastric volume obtained after 8 hour fasting (Tfasting) was 15.63±18.83 mL. At 120 and 180 minutes after drinking 12.5% maltodextrin solution (TCHO), the residual gastric volumes were 16.32±11.78 mL and 14.60±10.39 mL, respectively. Residual gastric volumes at 120 and 180 minutes after drinking 12.5% maltodextrin plus 15 g glutamine (TCHO+GLN) were 15.63±18.83 mL and 13.65±10.27 mL, respectively. There was no difference between the gastric volumes obtained after 8 hours of fasting and those obtained at 120 and 180 minutes after ingestion of either volume (200 or 400 mL) of CHO or CHO+GLN (P>0.05) (Table 3 and Figure 3).

TABLE 2. Demographic data of study population after randomization

Means±SD	Body weigh (kg)	69.97 ± 10.99
Age (years)	24.90 ± 3.91	
Height (m)	1.68 ± 0.09	
BMI (kg/m²)	24.50 ± 2.61	

FIGURE 3. Residual gastric volume after 8 hour fasting (Tfasting), and at 120 (T120) and 180 (T180) minutes after drinking a beverage containing maltodextrin or maltodextrin plus glutamine.

TABLE 3. Mean ± standard derivation of residual gastric volume (mL) after an 8 hour fast (Tfasting), and at 120 (T120) and 180 (T180) minutes after drinking a beverage containing maltodextrin or maltodextrin plus glutamine

<table>
<thead>
<tr>
<th>Tfasting</th>
<th>CHO</th>
<th>CHO+GLN</th>
</tr>
</thead>
<tbody>
<tr>
<td>T120</td>
<td>16.32 ± 11.78</td>
<td>15.63 ± 18.83</td>
</tr>
<tr>
<td>T180</td>
<td>14.60 ± 10.39</td>
<td>13.65 ± 10.27</td>
</tr>
</tbody>
</table>

*P<0.05 versus T120 and T180 (CHO and CHO+GLN). CHO: carbohydrate (maltodextrin); CHO+GLN: maltodextrin + glutamine.

DISCUSSION

In the present study, the mean residual gastric volume after 8 hour fasting was very close to that obtained with 2 hour fasting and then having participants drink beverages containing either maltodextrin alone or maltodextrin plus glutamine. No significant difference was observed in regard to the volumes used (400 or 200 mL) for both beverages.

Assessment of the residual gastric volume can be done with several methods: aspiration by an enteral tube positioned in the stomach, scintigraphy, 3-D ultrasound, and MRI. Two-dimensional ultrasound can be used for this analysis, and it is a noninvasive exam that can be performed at bedside. Dock-Nascimento and colleagues studied 56 women who underwent elective video laparoscopic cholecystectomy, and assessed their residual gastric volume through aspiration by a nasogastric tube during anesthetic induction. Patients were randomly assigned to four groups: standard fasting, and three groups with abbreviated fasting using respectively water, 12.5% maltodextrin, or 12.5% maltodextrin with 50 g glutamine. Patients drank 400 mL of the solution on the night before surgery, and 200 mL of solution 2 hours before anesthetic induction. Mean residual gastric volumes were around 10 mL, and all were statistically similar. Their findings corroborate ours, but our residual volumes measured by ultrasound assessment were greater. In our study, 8 hour fasting resulted in 15.36 mL vs 5 mL in their study, 2-hour maltodextrin resulted in 16.32 mL vs 7 mL, and maltodextrin + glutamine resulted in 15.63 mL vs 4.5 mL. We believe that the higher volumes obtained with ultrasound were due to improvement of the evaluation method, with ultrasound providing direct observation of the volume concentrated inside the gastric antrum.

Gentilcore and colleagues studied gastric emptying time using scintigraphy and 3-D ultrasoundography and two distinct diets, and found no significant differences between the approaches. The authors concluded that the residual gastric volume after 8 hour fasting was similar for the two types of diet (39.9 and 51.8 mL), a finding that is consistent with our results. This finding indicates that ultrasound is a good alternative for measuring residual gastric volume, and thus should be further investigated.

Lobo and colleagues measured the residual gastric volume using MRI in subjects who drank one of three types of liquid diet: one enriched with carbohydrate diluted in 400 mL of liquid, and two other more complex diets. The mean residual gastric volume was calculated after 8 hour fasting or at 120 and 180 minutes after diet intake. Residual gastric volume after 8 hour fasting ranged between 12 and 42 mL, which is similar to that found in our study. After drinking the carbohydrate plus glutamine beverage, the gastric volumes observed by Lobo and colleagues were 30 and 15 mL at 120 and 180 minutes, respectively. The result obtained at 120 minutes was greater than ours, although the volume of solution used in the study by Lobo and colleagues was twice as much as that used in our study. After 180 minutes, however, the result obtained was similar to that of our study.

The use of ultrasonography to measure the residual gastric volume is inexpensive and can be done with high-technology handheld devices that can be used at the bedside or in the operating room. However, it is a subjective exam, and the skill of the operator performing the examination may directly affect the quality of the results. Instructing individuals to lie down in decubitus position, as performed in this study, prevents the flow of liquid into other areas of the stomach, which would compromise the measurement of residual gastric volumes.

Our results show that abbreviation of fasting, followed by intake of a carbohydrate solution alone or in association with glutamine, diluted in either 400 or 200 mL, is safe method that produces results similar to those observed after an 8 hour fast. Therefore, this alternative approach should be investigated further to produce additional data supporting the widespread use of this technique.
Residual gastric volume evaluation with ultrasonography after ingestion of carbohydrate- or carbohydrate plus glutamine-enriched beverages: a randomized, crossover clinical trial with healthy volunteers

Authors’ contributions
Gomes PC: data collection, literature review, article elaboration, study design, project development. Aguilar-Nascimento JE: study design, project development and treatment supervision and critical analysis. Araujo VMT: nutritional assessment and guidance of solutions used, literature review. Silva AMC: statistical analysis and writing of text. Caporossi C: project development, literature review, study design, treatment supervision and critical analysis.

REFERENCES