MAGNETIC RESONANCE IMAGING IN HTLV-I ASSOCIATED MYELOPATHY

AILTON MELO *, LUCIANA MOURA **, SOLANA RIOS *, MARCOS MACHADO ***, GERSONITA COSTA ***

SUMMARY — Magnetic resonance imaging of the brain and spinal cord were carried out for seventeen consecutive patients with HTLV-1 associated myelopathy (HAM). Eight patients had brain abnormalities and four had decreased thoracic spinal cord diameter. Brain lesions were mostly located in subcortical and periventricular areas. Our data suggest that diffuse central nervous system lesions are present in patients with HAM.

KEY WORDS: HTLV-1, myelopathy, leukoencephalopathy, MRI.

METHODS

The subjects of the present study were 17 consecutive patients who have been seen in a hospital which assist the lower socioeconomic class in Salvador. Five men and 12 women, with ages ranging from 18 to 52 years old, were selected according to accepted clinical criteria of HAM, including progressive spastic paraparesis, urinary urgency or incontinence, constipa-

* Federal University of Bahia (UFBA) and Santo Antonio Hospital; ** UFBA; *** São Rafael Hospital - Salvador. Aceite: 24-janeiro-1993.

Dr. Ailton Melo — Departamento de Neuropsiquiatria, Faculdade de Medicina, UFBA - Av. Reitor Miguel Calmon s/n - 40110-100 Salvador BA - Brasil. Fax 55.71.245562.
tion and back pain sometimes associated with superficial sensitive syndrome. None of the patients had concomitant diabetes, heart diseases or arterial hypertension.

Laboratory. Serum and CSF samples were tested for antibodies to HTLV-1 using commercially available enzyme immunoassay (EIA). EIA repeatedly reactive samples were further examined using a HTLV-1 viral and recombinant proteins as an antigen source. Samples were considered serologically positive if antibodies against both the gag (p24) and env (p21E) gene products were present. The CSF from all participants were tested for the presence of antibodies against syphilis, toxoplasmosis, schistosomiasis and cysticercosis.

Imaging. Brain and spinal cord MRI were performed with a 0.6-t superconductive unit image with multi-slice, multi-echo (SE) pulse sequence. Brain MRI was imaged in axial plane. Sagittal and coronal images were occasionally obtained as well. The slice thickness was 5 mm without interslice gaps. The acquisition matrix was 256x256. The MR studies of cervical and thoracic spinal cord were done with multi-slice, multi-echo(SE) pulse sequence and field echo. The slice thickness was 5 mm without gaps, or 3 mm with 1 mm interslice gap. The exams were carried out in two different hospitals.

RESULTS

Age at the onset of neurologic symptoms as judged from the history ranged between 17 and 45 years (mean age 32.4 years).

Abnormalities detected by MRI are summarized in Table 1. Ten (58.8%) of 17 patients with HAM had abnormalities on brain, thoracic spinal cord or both.

Among patients studied, 8 (47%) had brain abnormalities and 4 (23.5%) had markedly decreased diameter of thoracic spinal cord. Two patients had brain and spinal cord lesions. Five patients had positive periventricular lesions. Subcortical brain abnormalities were found in three patients and three shared both subcortical and periventricular lesions. Figure 1 shows: periventricular brain radiologic abnormalities in a 45 year old patient with HAM for 12 years; several large and confluent lesions near the anterior and posterior horns as well as subcortical lesions in a 42 old woman with HAM for 18 years. In four patients thoracic spinal cord thickness was heavily reduced as shown in Figure 2.

In none of the patients lesions in the cerebellum or brain stem were found.

COMMENTS

The present cases of HTLV-1 associated myeolapathy showed an uniform clinical picture as previously reported but some radiological abnormalities point to different grades of an unique disease. Our patients exhibited e neurological disorder with brain and spinal cord involvement as determined with MRI. Brain lesions were multifocal but predominated in periventricular and subcortical areas of the brain.

Although intraparenchymal spinal cord lesions have been previously described none of our patients had these kind of lesions. The conspicuous de-

Table 1. MRI findings in the central nervous system of 17 patients with HAM.

<table>
<thead>
<tr>
<th>Item</th>
<th>Number of cases</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>7</td>
<td>41.2</td>
</tr>
<tr>
<td>Brain abnormalities</td>
<td>8</td>
<td>47.0</td>
</tr>
<tr>
<td>Periventricular lesions</td>
<td>5</td>
<td>29.4</td>
</tr>
<tr>
<td>Subcortical lesions</td>
<td>3</td>
<td>17.6</td>
</tr>
<tr>
<td>Both</td>
<td>3</td>
<td>17.6</td>
</tr>
<tr>
<td>Decreased thoracic spinal cord diameter</td>
<td>4</td>
<td>23.5</td>
</tr>
</tbody>
</table>
Fig. 1. Examples of periventricular white-matter high intensity lesions detected by T2-weighted MR: lesions around occipital horns; subcortical and periventricular lesions.

Fig. 2. Marked reduction of the thoracic cord thickness: sagittal and transversal view.
crease of thoracic spinal cord diameter is probably due to a high degree of demyelination and degeneration of pyramidal, spinocerebellar and spinothalamic tracts, as has been found in necropsy studies. The perivascular cuffing of lymphocytes throughout the CNS as has been pointed out in necropsies suggests that vasculitis could be a feature of the pathology of patients with HAM and explain the multifocal lesions observed in these patients.

Brain changes in our patients were similar to demyelination lesions found in healthy elderly, vascular problems and also in primary diseases like multiple sclerosis. Considering these different situations it is possible that different mechanisms are operative in the MRI findings of HAM. Brain lesions showed no correlation with the age of onset of HAM but were related to severity of symptoms.

Meanwhile, further and controlled studies are necessary for understanding the pathogenesis of MRI findings in HAM.

REFERENCES

