MUMPS MENINGOENCEPHALITIS
AN EPIDEMIOLOGICAL APPROACH

ABSTRACT - The aim of this study was to analyse distribution of meningoencefalitis caused by mumps virus in children related to sex, age and seasonal influences. Thirty seven children were evaluated, ages ranging from 2 to 14 years. They were seen at Emergency Unit of Faculdade de Medicina do Triângulo Mineiro and at Hospital da Criança, in Uberaba-MG, Brazil, from March 1st 1991 to February 1st 1993 and they were hospitalized for about 5 days. Through a protocol findings were studied during hospitalization and clinical course stressing epidemiology, symptomatology, cerebrospinal fluid studies, electroencephalogram and cortical function analysis. Only epidemiological data were considered in the present study. Data analysis revealed male predominance, at a range from 5 to 9 years and great number of occurrences at the last quarter of the year.

KEY WORDS: mumps meningoencephalitis, neuroepidemiology, aseptic meningoencephalitis.

Mumps virus is one of the most frequent agents causing aseptic meningoencephalitis in patients under 15 years old. Nevertheless, the real incidence is clinically difficult to establish because it occurs asymptomatically (36%) or in the absence of parotiditis (29%). Cerebrospinal fluid (CSF) studies in patients with epidemic parotiditis show pleocytosis ranging from 34% (26/77) to 63% (235/371). Mumps virus belongs to genus Paramyxovirus, family Paramyxoviridae, and possess one RNA molecule. Two surface glucoproteins (HN and F) were described, which are essential for

Este estudio faz parte da Dissertação de Mestrado do primeiro autor, apresentada à Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brasil. * Faculdade de Medicina do Triângulo Mineiro (FMTM), Uberaba, MG, Brasil.; **Faculdade de Ciências Médicas, Universidade de Campinas, SP, Brasil. Aceite: 2-setembro-1996.

Dr. Alfredo Lебoreiro-Fernandez - Avenida Leopoldino de Oliveira 2733, 9º andar - 38.015-000 Uberaba MG - Brasil.
infectivity and to elicit antibodies production. It often causes endemic parotiditis, with cosmopolitan
distribution, occurring predominantly during winter and beginning of spring, at an inter-epidemic
period of 3 years. Humans are probably the only reservoir for the virus and personal contact is
essential for the transmission, through saliva or respiratory secretions, reaching individuals of all
ages, predominantly those between ages 5 to 15 (85 to 95%) years. Around 25% to 40% of individuals
aged above 5 years, carrying this virus, and 50% of children less than 5-years-old, are asymptomatic.
It is rare in young children less than 6 months-old. Incubation period varies from 12 to 35 days
(mean, 14 to 21 days).

Clinic diagnosis of meningeal involvement is made in 23 to 35% of patients, emerging 2 to
10 days after parotiditis and lasting 3 to 5 days. Encephalitis occurs in 0.2% of cases and it occurs
1 to 2 weeks after parotiditis. Etiologic diagnosis is suspected when parotiditis is associated and
this was manifested until 3 weeks before acute neurologic period. Parotiditis is accepted as an important
criterion and differential diagnosis must be considered in the absence of epidemiological data or
when it is atypical.

It is the purpose of this report discuss some epidemiologic findings which were observed in a
definite population, during the course of meningoencephalitis caused by mumps virus (MEMV) in
children related to sex, age and seasonal influences.

MATERIALS AND METHODS

Thirty seven children aged 2 to 14 years were seen at Emergency Unit of Hospital Escola of FMTM
and at Hospital da Criança, in Uberaba-MG, Brazil, from March 1st 1991 to February 1st 1993.

Diagnosis was made following these criteria: temporal association with epidemic parotiditis; presence
of symptoms and signals of neurologic involvement; laboratorial findings through cerebrospinal fluid (CSF)
studies and antibodies for mumps virus in the CSF, and spontaneous clinical improvement.

Aiming to facilitate interpretation of clinical data, children were divided into age groups as follows:
group A, patients aged 1 to 4; group B, from 5 to 9; and group C, from 10 to 14 years.

Clinical and neurologic evaluations were performed prospectively following a protocol. Laboratorial
tests consisted on total peripheral leukocyte and erythrocyte counts, and serum amylase and electrolyte level
determinations. CSF studies included cytology, biochemistry, bacterioscopy and bacterial culture in addition of
IgM antibodies to mumps virus (Hoechst-Boehringer®). Normal values for CSF were those of Spina-França,
Silver & Todd and Fishman.

Meteorologic conditions as air humidity, pluviometric index, environmental temperature, and wind speed
were analysed at period from March 1991 to February 1993.

RESULTS

Of 37 patients, 28 (75.7%) were male and 9 (24.3%) female, ratio of 3:1, being 29 (78.4%) white
and 8 (21.6%) non-white.

Ages ranged from 2 to 14 years (mean, 6.6 years). Group A consisted of 7 (18.9%), group B
of 25 (67.6%), and group C of 5 (13.5%) children (Fig 1).

Decreased air humidity was observed before the months with great incidence (October to
December) (Fig 2).

DISCUSSION

Mumps virus is responsible for systemic disease with a benign prognosis, which often
compromises central nervous system.

Epidemiological study of 37 cases confirms data previously observed of predominance for
gender, age groups and seasonal distribution, but there is little information about these findings.
It is not known the rationale for predominance in male11, which ratios are greater than most infectious diseases in childhood12 and this is in accordance to literature data6,8, ranging from 2.42,14 to 621 for 1. In this study this ratio was 3:1. Since mumps incidence is equal for both sexes10,19, meningoencephalitis probably is related to differences in clinical features suggested by the following reasons: a) female children shows more subclinical infections11; b) there is a possibility of occurrence of parotiditis and pleocytosis with no sign of meningeal involvement3; c) it is possible that children with greater sensibility to painful symptoms reports well what they feel17; and d) boys complaints more because they expressed more externalizing symptoms, are likely to tolerate pain less and are less resilient than girls15. We believe that these findings could explain this occurrence.

Related to age groups several researchers have found the range 5-9 years the more susceptible11,14,18, probably because it is the range which has the greater incidence of mumps27 and children begin to socialize and agglomerate during school activities.

We believe the striking occurrence of mumps during the last quarter of the year is due to failure of natural defense mechanisms occurring during this period. Studying meteorological ranges,
we observed low air humidity and dry climate, which are conditions capable to damage mucociliary
system and facilitate agent penetration into hostess cell9.

CONCLUSIONS

Our findings show special characteristics in mumps meningoencephalitis, observed in some
previous reports, although not related in our country.

The preponderance of males over females, may be explained for one or more of the somatic or
psychosocial reasons presented, although we had considered all options true and correlated.

The occurrence of MEMV predominantly during the winter and spring, present in the northern
and southern hemispheres, may be associated with the low of air humidity and dry climate, observed
in these seasons.

Acknowledgement - We are grateful to Professor Virmondes Rodrigues for helpful comments.

REFERENCES

1. Anderson RM, Crombie JA, Grenfell BT. The epidemiology of mumps in the UK: a preliminary study of virus transmission,
5. Chopin PW, Scheid A. The role of viral glycoproteins in adsorption, penetration, and pathogenicity of viruses. Rev Infect
7. Fishman RA. Composition of cerebrospinal fluid. In Fishman RA. Cerebrospinal fluid in diseases of the nervous system.
13. Levitt LP, Mahoney D, Casey HL, Bond JO. An epidemiologic and serologic study of mumps in families selected from a
15. Luttar SS, Zigler E. Vulnerability and competence: a review of research on resilience in childhood. Amer J Orthopsychiat
of Medicine, 1986:776-782.
International Textbook of Medicine, 1986:514-520.
26. Wilfert CM. Mumps meningoencephalitis with low cerebrospinal fluid glucose, prolonged pleocytosis and elevation of