EXTRAÇÃO CEREBRAL DE OXIGÊNIO
UM MODELO PRÁTICO E SUAS APLICAÇÕES CLÍNICAS

JULIO CRUZ*

RESUMO - A extração cerebral de oxigênio (ECO₂) constitui uma medida fisiológica pratica, com múltiplas aplicações clínicas. Esta variável é calculada simplesmente como a diferença artério-jugular das saturações da oxi-hemoglobina (de sangue arterial e do bulbo jugular). Por se tratar de medida global, a ECO₂ não permite detecção de alterações regionais do hemometabolismo cerebral. Todavia, sempre que se lidar com modificações predominantemente (não exclusivamente) globais, a ECO₂ fornece informação fidedigna sobre o balanço (ou acoplamento) entre o consumo cerebral de oxigênio e o fluxo sanguíneo cerebral.

PALAVRAS-CHAVE: extração cerebral de oxigênio, hemometabolismo cerebral, oxigenação cerebral.

Cerebral extraction of oxygen: a practical model and its clinical applications

ABSTRACT - Cerebral extraction of oxygen (CEO₂) represents a practical physiologic measure, with multiple clinical applications. This variable is calculated as the arterio-jugular difference in oxyhemoglobin saturation (from arterial blood and from the jugular bulb). Because it involves global measurements, the CEO₂ does not allow detection of regional abnormalities in cerebral hemometabolism. However, when dealing with predominantly (not exclusively) global changes, the CEO₂ provides accurate information on the balance (or coupling) between cerebral consumption of oxygen and cerebral blood flow.

KEY WORDS: cerebral extraction of oxygen, cerebral hemometabolism, cerebral oxygenation.

A extração cerebral de oxigênio (ECO₂) foi inicialmente introduzida na literatura médica em 1985 por nosso grupo.¹ Neste trabalho também apresentamos pela primeira vez uma nova técnica para monitorização contínua da saturação de oxi-hemoglobina do bulbo jugular (SjO₂), com catéter de fibra óptica.²

A ECO₂ reflete de forma acurada o balanço (ou acoplamento) entre o consumo cerebral de oxigênio (CCO₂)⁴ e o fluxo sanguíneo cerebral (FSC),⁰ em âmbito global. A ECO₂ calcula-se simplesmente como a diferença artério-jugular das saturações da oxi-hemoglobina, com medidas de sangue arterial geralmente obtidas da artéria radial, e medidas de sangue venoso cerebral obtidas do bulbo jugular.¹⁷ Enquanto a ECO₂ representa medida fidedigna tanto em condições normais ou de anemia aguda,⁴ a diferença artério-jugular do conteúdo de oxigênio (DAVO₂)⁹ é muito limitada, por ser fidedigna somente em pacientes não anêmicos, com conteúdo total de hemoglobina acima de 12 g/dL.⁴

Um Modelo Teórico-Prático

Em condições de fisiologia normal, o CCO₂ global é o maior do organismo humano, requerendo aproximadamente 20% da oferta total de oxigênio corporal. Assim sendo, aproximadamente 20%

*Associate Professor of Neurosurgery, Department of Neurosurgery, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania, U.S.A. Acepte: 12-outubro-1996.

Julio Cruz, M.D., Ph.D. - Department of Neurosurgery, Allegheny University - Broad & Vine, Mail Stop 455, Philadelphia, PA 19102-1192, USA. FAX: (1215) 762 3132.
do débito cardíaco são destinados apenas ao cérebro (o qual pesa somente 2% da massa corporal total aproximadamente).

A \(\text{ECO}_2 \) reflete exatamente o balanço entre a oferta de oxigênio e o consumo cerebral do mesmo elemento. Assim sendo, sem a necessidade de se medirem o \(\text{CCO}_2 \) e o FSC, pode-se precisamente quantificar diferentes graus de ajustamento entre os dois, ou seja, se o \(\text{CCO}_2 \) e o FSC estão devidamente acoplados. A partir de então, pode-se adotar múltiplas medidas terapêuticas visando a normalização da \(\text{ECO}_2 \).

Nosso modelo teórico-prático está ilustrado nas Figuras 1, 2, 3 e 4. Na Figura 1 tem-se o modelo em condições de fisiologia normal. Assim sendo, com \(\text{CCO}_2 \) normal, o metabolismo neuronal combina oxigênio e glicose e produz gás carbônico. A tensão parcial de gás carbônico (\(\text{PCO}_2 \)) tecidual media vasodilatação ou vasoconstricção (em resposta a aumentos ou diminuições da \(\text{PCO}_2 \), respectivamente), e em condições normais a microcirculação mantém diâmetro normal. O neurônio extrai aproximadamente 32% do oxigênio ligado à oxi-hemoglobina arterial e arteriolar (\(\text{SaO}_2 \)), restando aproximadamente 62% no lado venular e jugular (\(\text{SjO}_2 \)). A faixa normal para a \(\text{ECO}_2 \) é 24% - 42% em adultos, e estimamos esta faixa em 17% - 35% em crianças (observações não publicadas).

Na Figura 2 tem-se o modelo de hipometabolismo cerebral, ou de "fisiologia normal" em estados de coma, com \(\text{CCO}_2 \) diminuído. Assim sendo, diminui também a \(\text{PCO}_2 \) a nível peri-microcirculatório, o que resulta em vasoconstricção. Entretanto, a relação entre FSC e \(\text{CCO}_2 \) encontrase normal, e consequentemente a \(\text{ECO}_2 \) também permanece na faixa normal.

Na Figura 3 tem-se o modelo de hipoperfusão cerebral relativa, a qual denominamos hipóxia ou oligemia cerebral. Nestas condições, muito embora o \(\text{CCO}_2 \) esteja diminuído, a \(\text{ECO}_2 \) aumenta (acima de 42% em adultos e 35% em crianças), porque existe excessiva vasoconstricção microcirculatória. Consequentemente, a \(\text{SjO}_2 \) diminui, enquanto a \(\text{SaO}_2 \) mantém-se normal (ao contrário do que ocorreria em hipóxia hipoxêmica, devida a insuficiência respiratória).

Na Figura 4 tem-se o recíproco da hipóxia ou oligemia cerebral, o modelo de hiperperfusão cerebral relativa. Nestas condições, a \(\text{ECO}_2 \) diminui, e consequentemente a \(\text{SjO}_2 \) aumenta. O estado de hiperperfusão relativa constitui aberração da autorregulação metabólica do FSC, sendo a qual a diminuição do \(\text{CCO}_2 \) (e consequentemente da \(\text{PCO}_2 \) tecidual) levaria normalmente a um estado de vasoconstricção fisiológica (como na Figura 2).

Nossa experiência em grande série de pacientes com hipertensão intracraniana aguda traumática revelou recentemente que a hipóxia ou oligemia cerebral moderada é muito mais benéfica que a hiperperfusão relativa nas medidas iniciais (durante as primeiras horas após admissão hospitalar). Todavira, adovogamos a normalização da condição de hipóxia ou oligemia cerebral aumentando-se lentamente e cuidadosamente o FSC sem que se comprometa o controle adequado da pressão intracraniana (PIC), a qual deve ser mantida abaixo de 20 mm Hg em adultos, e 15 mm Hg em crianças. Da mesma forma, também adovogamos a normalização da condição de hiperperfusão cerebral relativa, sempre que associada à hipertensão intracraniana aguda.

Aplicações Terapêuticas

A combinação de hipertensão intracraniana aguda e alterações fisiológicas do hemometabolismo cerebral constituí achado comum em: a) traumatismos cerebrais agudos graves; b) encefalopatias metabólicas (particularmente a eencefalopatia hepática aguda grave); c) algumas formas de meningite e meningoencefalite; d) algumas formas de hemorragia intracraniana espontânea (não traumática). Caso haja lesões agudas intracranianas com efeito de massa, deve-se primeiramente aliviar a compressão cerebral cirurgicamente. A partir de então, havendo hipertensão intracraniana aguda associada a inchaço ("swelling") cerebral global, hemisférico ou mesmo regional, caberia a monitorização e tratamento das alterações predominantemente globais do hemometabolismo cerebral.
Fig 1 e 2. Diagrama ilustrando nosso modelo da unidade funcional hemometabólica cerebral, com o neurônio, o espaço intersticial, e a microcirculação. SaO_2 é a saturação da oxi-hemoglobina arterial (e arteriolar); SjO_2 é a saturação da oxi-hemoglobina venular (e do bulbo jugular); ECO_2 é a extração cerebral de oxigênio (a diferença entre os valores de SaO_2 e de SjO_2); CCO_2 é o consumo cerebral de oxigênio (intra-neuronal); PCO_2 é a tensão parcial de gás carbônico intersticial. A seta apontando da esquerda para a direita representa o fluxo sanguíneo cerebral. Fig 1, em cima. Fig 2, em baixo.
Fig 3 e 4. Ver legenda Figs 1 e 2. Fig 3, em cima. Fig 4, em baixo
através de avaliação: a) da PIC; b) da pressão de perfusão cerebral (PPC), definida como a diferença entre pressão arterial média (PAM) e PIC média; c) e da ECO₂.

Em situações adversas nas quais não se possa obter monitorização da PIC, a PPC pode ser medida como a diferença entre a PAM e a pressão venosa cerebral obtida do mesmo catáter cuja ponta está colocada no bulbo jugular para medidas da ECO₂. Assim sendo, a PPC modificada seria medida como a diferença entre PAM e PBJ (pressão do bulbo jugular). Em condições normais, a PBJ encontra-se numa faixa de aproximadamente 5 mm Hg a menos que a PIC (observações não publicadas). Isto implica que a PBJ deve ser considerada anormalmente alta se superior a 15 mm Hg em adultos. Em crianças não se conhecem valores normais para a PBJ, mas dever-se-iam evitar valores maiores que 10-15 mm Hg sempre que possível.

Em condições nas quais não se conte com monitores que expressem quantificação em mm Hg, pode-se ainda medir a PBJ em coluna líquida (como em medidas convencionais da pressão venosa central). Para tanto deve-se zear a coluna líquida ao nível da mastóide. Para cada centímetro da coluna líquida (de soro fisiológico), multiplica-se o valor por 0,75, obtendo-se assim o valor convertido correspondente em mm Hg. Assim, por exemplo, 20 cm H₂O correspondem a 15 mm Hg.

Metas Terapêuticas

O valor normal aproximado para a PAM é 90 mm Hg (pode ser menor em crianças), correspondendo a aproximadamente 120 por 80 mm Hg (sistólica e diastólica, respectivamente). O valor normal médio para a PPC seria portanto 80 mm Hg (assumindo-se 10 mm Hg como normal para a PIC). Assim sendo, dever-se-iam evitar valores de PPC inferiores a 60 mm Hg aproximadamente (limite inferior da normalidade). Da mesma forma, dever-se-iam evitar valores de PIC superiores a 20 mm Hg em adultos e 15 mm Hg em crianças, e PAM inferior a 70-80 mm Hg.

Quanto à ECO₂, as seguintes condições podem ser observadas:

a) ECO₂ normal com PIC e PPC normais - neste caso não há indicações terapêuticas adicionais.

b) ECO₂ normal com PIC aumentada - mesmo que a PIC esteja normal, deve-se baixar a PIC sem aumentar excessivamente a ECO₂. Neste caso pode-se diminuir a PCO₂ arterial moderadamente, e mantê-la a ECO₂ pouco aumentada, todavia dentro da faixa normal. A segunda opção seria a administração rápida intravenosa ("bolus") de diurético osmótico como o manitol, o qual baixa a PIC e diminui a ECO₂.

c) ECO₂ diminuída com PIC normal - neste caso, se houver interesse em se normalizar a ECO₂ mesmo que a PIC esteja normal, deve-se evitar hiperventilação profunda. Isto porque a hiperventilação moderada, com PCO₂ arterial na faixa de 25-30 torr, seria suficiente para prevenir o desenvolvimento de hiperperfução relativa acentuada secundariamente, com consequentes aumentos da PIC. Caso a ECO₂ esteja muito baixa (por exemplo 15%) com PIC normal (por exemplo 10 mm Hg), parece-nos aconselhável não se tentar normalizar a ECO₂ somente (com hiperventilação profunda), já que a meta principal da hiperventilação otimizada é normalizar simultaneamente a PIC (e consequentemente a PPC), assim como a ECO₂, e não a ECO₂ somente.

d) ECO₂ diminuída com PIC aumentada - mesmo que a PPC esteja normal, deve-se baixar a PIC e aumentar a ECO₂, normalizando-se estas duas variáveis. Neste caso, a melhor opção seria diminuir-se a PCO₂ arterial até 19-20 torr se necessário (hiperventilação otimizada) através de aumentos da frequência respiratória.

e) ECO₂ aumentada com PIC normal - mesmo que a PPC esteja normal, deve-se diminuir (normalizar) a ECO₂. Neste caso, se a PCO₂ arterial estiver baixa, deve-se reverter parcialmente a hipocapnia, diminuindo-se a frequência respiratória e consequentemente o volume-minuto. Esta manobra pode levar frequentemente à vasodilatação cerebral global microcirculatória, e aumento da
PIC. Caso esta última variável atinja valores anormalmente altos, deve-se imediatamente suplementar o tratamento com a administração rápida de manitol por via intravenosa, tão logo a PIC atinja níveis de 15-20 mm Hg. Com tal suplementação, obtem-se satisfatória diminuição da PIC e diminuição adicional da ECO₂ para valores normais. Isto porque o manitol tem um efeito duplo em estados de hipóxia oliguêmica cerebral, baixando a PIC e aumentando a SjO₂ (diminuindo consequentemente a ECO₂).³

f) ECO₂ aumentada com PIC aumentada - mesmo que a PPC esteja normal, deve-se simultaneamente baixar a PIC e a ECO₂. Neste caso, a estratégia inicial seria a administração de manitol em altas doses, repetidas a cada 60-90 minutos,² até que se obtenha normalização simultânea das duas variáveis. Caso o manitol não atinja o objetivo desejado, a opção seguinte seria terapêutica barbitúrica (para simultaneamente baixar a PIC e o CCO₂). Entretanto, terapêutica barbitúrica deve ser considerada cuidadosamente, já que em alguns pacientes ela pode resultar em hipóxia oliguêmica cerebral acentuada.⁶ O mesmo pode se dizer de terapêutica hipotérmica, a qual induz hipotensão arterial (além de outros efeitos indesejáveis).

Considerações Finais

A abordagem terapêutica multivariável como acima exposta permite mais que somente a normalização da PIC e PPC (as quais não informam absolutamente sobre o metabolismo e função cerebrais).⁷ Ao acrescentar-se a ECO₂, tem-se informação para normalização da relação entre o CCO₂ e o FSC, sem a necessidade de se medirem os mesmos e, talvez mais importante, permitindo o ajustamento (acoplamento) terapêutico entre oferta e consumo (otimizados através de medidas da ECO₂ simplesmente). Cabe salientar que o tratamento intensivo destes pacientes leva aproximadamente uma semana, durante a qual medidas repetidas frequentes da ECO₂ devem ser consideradas a intervalos de 6 ou 8 horas aproximadamente.

Nossa estratégia básica ao selecionarmos pacientes para monitorização da PIC, PPC e ECO₂ envolve o critério combinado clínico (coma profundo) e tomográfico (inchaço cerebral e cisternas da base comprometidas). Neste grupo de pacientes, nossos resultados preliminares ao normalizarmos terapeuticamente a ECO₂ (ao invés da PIC e PPC somente) revelaram mortalidade na faixa de 5% a 13%, e boa recuperação neurológica (atividades independentes de vida) na faixa de 70% a 80%⁶⁶.

Mais recentemente, em grande série de 205 pacientes⁷ nos quais avaliamos recuperação neurológica em função de valores iniciais (preoces) da ECO₂, a mortalidade esteve na faixa de 10% a 13% na grande maioria dos pacientes, em condições nas quais a ECO₂ inicial estava aumentada ou normal, respectivamente. Em contrapartida, a mortalidade foi de 37% num pequeno subgrupo de pacientes nos quais a ECO₂ inicial encontrava-se diminuída (hipoperfusão cerebral relativa).⁷ Tais achados são corroborados por estudo anterior the Uzzell e cols.,¹³ numa série menor de pacientes, na qual se observou melhor recuperação neurológica em pacientes com valores baixos de FSC durante a fase aguda do trauma, do que em pacientes que apresentavam hiperemia cerebral. No trabalho acima citado¹³ não se mediu a ECO₂, mas o estado de hiperperfusão relativa foi estimado através de medidas do FSC.

Outros trabalhos têm sido apresentados¹¹,¹² nos quais não se adotou monitorização e otimização da ECO₂, e nos quais foram revelados resultados menos satisfatórios do que os nossos, naquilo que se refere a taxas de mortalidade e boa recuperação neurológica. Nestes trabalhos,¹¹,¹² pacientes admitidos consecutivamente em coma agudo traumático foram submetidos a certas modalidades “padrão” de tratamento, sem estratificação (selecção) de acordo com o tipo de lesão tomográfica predominante. Assim sendo, “assumiu-se” o traumatismo cerebral agudo como uma doença única.¹¹,¹² Em nossos trabalhos⁵-⁷, todavia, pacientes não foram avaliados consecutivamente, mas selecionamos somente os casos mais graves do ponto de vista de inchaço cerebral e de hipertensão intracraniã aguda, além do estado de coma profundo.
Assim sendo, uma análise comparativa entre os nossos resultados e o de outros autores deve levar em consideração nossa seleção de pacientes. De fato, em uma destas séries recentes12 de pacientes admitidos consecutivamente, somente 35% dos casos apresentaram inchaço cerebral traumático, dos quais somente 16% apresentaram cisternas da base comprometidas,12 enquanto que na outra série os autores sequer descreveram os achados tomográficos correspondentes.11 Diante do exposto, estudos futuros comparáveis aos nossos teriam que apresentar um critério de seleção de pacientes de acordo com diferentes tipos de lesão cerebral traumática, para serem submetidos a modalidades específicas de tratamento. Afinal, traumatismo cerebral agudo não é uma doença única, um fato recentemente realçado8,9.

Agradecimentos - O autor agradece muitíssimo a seus pais, Julio Adamor Cruz (in memoriam) e Hermendina Xavier Cruz, por 25 anos de apoio integral e inestimável durante o processo educacional; a Rotary Foundation of Rotary International, pela Bolsa de Pós-Graduação de um ano (1980-81) que lhe permitiu a adaptação inicial nos Estados Unidos; e aos médicos(as), enfermeiras(os), cientistas, e técnicos(as) que contribuíram para o desenvolvimento deste trabalho.

REFERÊNCIAS