UNUSUAL MANIFESTATIONS OF NEUROCYSTICERCOSIS IN MR IMAGING

Analysis of 172 cases

Lázaro Amaral2, Murilo Maschietto1, Roberta Maschietto1, Ricardo Cury1, Nelson Fortes Ferreira2, Renato Mendonça2, Sérgio Santos Lima3

ABSTRACT - Purpose: The typical manifestations of neurocysticercosis are described widely in the literature. The purpose of this study is to demonstrate the uncommon presentations of different forms of neurocysticercosis in MR imaging. Method: A retrospective analysis of 172 cases of neurocysticercosis in MR studies was carried out over a period of 13 years. One hundred and four males and 68 females with a mean age of 32 ± 3.7 years were studied. The studies were performed on 1.5 T GE MR units and T1 was used before and after gadolinium injection, T2 and gradient-echo (T2*) sequences. Results: The authors divided the unusual manifestations of neurocysticercosis into: intraventricular, subarachnoid, spinal, orbital, intraparenchymatous, and reactivation of previously calcified lesions. The results obtained were: intraparenchymatous 95 cases (55.23%); intraventricular 27 cases (15.69%); subarachnoid 20 cases (11.63%); spinal 6 cases (3.49%); orbital 1 case (0.58%); reactivated lesion 1 case (0.58%); association of intraventricular and intraparenchymatous 12 cases (6.98%); association of subarachnoid and intraparenchymatous 6 cases (3.49%); association of subarachnoid and intraventricular, 4 cases (2.32%). Conclusion: MR imaging is a sensitive and specific method in the analysis of different forms of unusual manifestations of neurocysticercosis, which should appear in the differential diagnosis of parenchymal, ventricular, spinal, cisternal, and orbital lesions.

KEY WORDS: cysticercosis, parasites, MRI, subarachnoid space.

The typical manifestations of neurocysticercosis are widely described in the literature. The purpose of this study is to demonstrate the uncommon aspects of the different forms of neurocysticercosis in magnetic resonance imaging (MRI).

METHOD

A retrospective analysis of MRI exams of 172 neurocysticercosis patients, performed between 1989 and 2002, was carried out. There were 104 males and 68 females with a mean age of 32.3 years. The studies were performed on 1.5T GE MRI units with sequences SE T1WI pre- and postcontrast (Gd-DTPA), FSE T2WI, FLAIR and Gradient echo (T2*WI).

RESULTS

Neurocysticercosis presentations were divided into: intraventricular, subarachnoid, spinal, orbital and in-
The results obtained were: intraparenchymatous (95 cases or 55.23%), intraventricular (27 cases or 15.69%), subarachnoid (20 cases or 11.63%), spinal (6 cases or 3.49%), orbital (1 case or 0.58%), reactivated lesion (1 case or 0.58%), association of intraventricular and intraparenchymatous (12 cases or 6.98%), association of subarachnoid and intraparenchymatous (6 cases or 3.49%), association of subarachnoid and intraventricular (4 cases or 2.33%).

DISCUSSION

Cysticercosis affects 50 million people around the world, with a prevalence of 3 to 6% of the population.
in endemic areas such as Central and South America, East Europe, Africa and some regions in Asia1,2. Cysticercosis is the most common parasitic infection of the central nervous system (CNS) and it is caused by *Taenia solium*’s invasion in its larval stage. CNS involvement occurs in 60 to 90\% of patients with cysticercosis3-5. The severity of neurocysticercosis depends on the location of the parasite in important tissues, as for example the orbit and the CNS, being the latter a frequent cause of seizures in Brazil6.
When invasion of the CNS occurs, the cysticerci develop in four stages identified by MRI (Table 1). With didactic purpose, the unusual forms of neurocysticercosis were divided into: intraventricular, subarachnoid, spinal, orbital, intraparenchymatous and reactivation of previously calcified lesion.

Intraventricular neurocysticercosis

The ventricular system is the second most common site of neurocysticercosis. It is frequently caused by *Cysticercus cellulosae*, however *Cysticercus racemosus* can also infect the ventricular system. The intraventricular form of the disease is found in more than 54% of patients with intracranial cysticercosis studied by MRI.

It most commonly affects the IV ventricle (54%-64%), followed by the III ventricle (23%-27%), the lateral ventricles (11%-14%) and Sylvius aqueduct (9%). In our study we had 43 intraventricular, being 69% located in the IV ventricle, 12% in the III ventricle, 12% in the lateral ventricles and 7% in the Sylvius aqueduct. Computed tomography (CT) does not fre-
Fig 8. MRI Sagital T2WI, Axial T1WI and Sagital T1WI postcontrast (Gd-DTPA): Multiple cystic lesions in intradural-extradural situation leading to spinal cord compression.

Fig 9. MRI Sagital T2WI and Sagital T1WI: Intramedullary cystic lesions and pictures of the surgical removal of them.

Fig 10. MRI Sagital T2WI and Sagital T1WI: Multiple cystic lesions in extra dural situation.
Fig 11. MRI Coronal T2WI and Axial T1WI with Fat saturation postcontrast (Gd-DTPA). Small cystic lesion in the right medial rectus muscle.

Fig 12. MRI Axial T2WI and T1WI postcontrast (Gd-DTPA): Miliary form.

Fig 13. MRI T1WI postcontrast (Gd-DTPA) - ring enhanced lesion in the frontal lobe. MR PWI - without high perfusion. Follow-up confirmed cysticercosis.

Consequently show these lesions, because their density is similar to that of the cerebrospinal fluid (CSF). On MRI they can present hyperintensity on T1WI in comparison to the CSF due to their protein content. The *C. racemosus* does not have scolex and multiply by wall proliferation. The *C. cellulosae* has scolex and one vesicle. When there is scolex, it is hyperintense on T1WI and generally does not enhance. The cyst is frequently mobile within the ventricles, and can cause acute hydrocephalus. Usually they migrate from the lateral ventricle to the III ventricle and after that to the IV ventricle through the Sylvius aqueduct (Figs 1, 2, 3 and 4).
They are frequently associated with aqueductal stenosis, which could be secondary to coexistent ependymitis, appearing as wall enhancement near the parasite or adhesion by a previous inflammatory process.

Subarachnoid neurocysticercosis

Both the *C. cellulosae* and the *C. racemosus* affect the subarachnoid space, being the latter more frequent. The incidence of cysternal involvement is estimated at 3.5% of all neurocysticercosis cases, being the third most common site. In our study, 30 cases presented in this location. They involve basal cisterns, mainly the supra selar, perimesencephalic, magna and Sylvian fissures.

The cystic masses are multiloculated, do not enhance after gadolinium chelates injection and determine cysternal expansion and deformity. They are related to local inflammatory reaction which can cause leptomeningeal thickening, fibrosis and localized calcifications, most probably representing chronic meningitis (Fig 5). The inflammatory response could lead to vasculitis, affecting the basal perforating vessels, resulting in infarction.

The major differential diagnosis are: arachnoid cyst, neuroglial cyst and epidermoid tumor (Figs 6 and 7).

Spinal neurocysticercosis

Cysticercosis may involve the spinal space and/or the spinal cord in CSF less than 1% of the cases, being more frequent the involvement of the subarachnoid space than the spinal cord. The forms observed are: intradural-extramedullary in 54% of the cases, intramedullary in 17% and association of intramedullary and intradural-extramedullary in 17%. Extra dural is very rare with few cases reported.

The intradural-extramedullary involvement occurs predominantly due to larval dissemination from brain to the spinal subarachnoid space. The cysticercus in the subarachnoid space leads to inflammatory reaction and collagen proliferation, being the clinical signs of spinal cysticercosis caused by direct compression of neurological tissue or due to inflammatory reaction. (Ex. arachnoiditis)

The intramedullar cysticercosis results mainly from hematogenic dissemination of extra CNS infectious focuses. The thoracic spine is the most involved in this presentation, because this is the most vascularized spinal segment. For the same reason the cere-
bral involvement of neurocysticercosis is much more frequent than the spinal one.

Of the six cases with spinal neurocysticercosis of our casuistic, three were intradural and extramedullary (Fig 8), two were intramedullary (Fig 9) and one was extradural (Fig 10).

Orbital neurocysticercosis

The cysticercus reaches the orbit through the choroid vessels, having primitive sub-retinian location. During its development the cysticercus needs more space and it either stays in the primitive site and leads to retinal detachment or it perforates the retina with vitreous invasion. Inside the orbit it can induce inflammatory reaction and blindness in 8% of patients.

The orbital cysticercosis outside the eyeball generally involves the extra-ocular muscles, leading to myositis which determines motor restriction and squint. The treatment of choice is the surgical removal. Occasionally, the cyst can resolve spontaneously.

On T1 weighted non-contrasted images the parasite appears hyperintense, simulating primary choroidal melanoma. On T2WI the lesion appears hypointense. The differential diagnosis should include retinoblastoma (in children), primary melanoma and metastasis (in older patients). In our study we had identified only one case involving the orbital extrinsic muscles (Fig 11).

Atypical forms of intraparenchymatous neurocysticercosis

There are two atypical forms of intraparenchymatous presentations: miliary and pseudotumoral.

The miliary form represents massive cysticercus infestation of the CNS and is characterized by multiple small cystic formations diffusely spread out in the brain parenchyma. It is a rare form of presentation, being observed in only one of our cases (Fig 12).

In some cases, neurocysticercosis can present itself with forms indistinguishable from primary or secondary tumors. The solitary lesions can be large.
or small, solid or cystic, and can present themselves with wall enhancement or mural nodule, being or not surrounded by edema. The main differential diagnosis of this kind of lesion should include gliomas, hemangioblastomas, neuronal cell tumors (gangliogliomas) and echinococcosis. Lesions involving the superior cerebellar vermis in children can be indistinguishable from medulloblastomas or astrocytomas.

In our 113 intraparenchymatous cases, the majority of the non calcified lesions simulated tumors. In one of them, increased MR Perfusion weighted images (PWI) helped us to differentiate cysticercosis from GBM (Figs 13 and 14).

Reactivation of neurocysticercosis

Cerebral calcified lesions in patients with previous neurocysticercosis represent cysticercus’s death (immunologic inactivity). In recent studies some theories try to explain the peri-lesional edema in previously calcified lesions\(^1\)\(^-\)\(^\text{16}\). A plausible explanation proposed is that calcified lesions contain dead cysticercus antigens in insoluble and inaccessible forms and for some reason not yet clarified it could be recognized by the host triggering inflammatory reaction.

It is not well known, why only some calcified lesions trigger inflammatory response.

In our study we had only one case of reactivation of a previously calcified lesion (Figs 15, 16 and 17).

CONCLUSION

MRI is a sensitive and generally specific method in the analysis of different forms of unusual manifestations of neurocysticercosis, which should appear in the differential diagnosis of parenchymal, intraventricular, spinal, cysternal and orbital lesions.

REFERENCES