TUBERCULOSIS

An uncommon cause of cerebral venous thrombosis?

José Antonio Fiorot Júnior1, André Carvalho Felício1, Márcia Mauimi Fukujima1, Celso Arraes Rodrigues2, Vânia Maria Morelli2, Dayse Maria Lourenço2, Gilmar Fernandes do Prado1

ABSTRACT - Several infectious etiologies are related to cerebral venous thrombosis (CVT), but a review of literature showed only few cases related to tuberculosis (TB), and only one with neurological manifestations. We report an unusual case of CVT related to TB and mutation in prothrombin gene. A 38-year-old black man presented abrupt right hemiparesis, and hemiparesis. Investigations revealed CVT. Cerebral spinal fluid (CSF) examination evidenced an infection by Mycobacterium. He was heterozygous for G20210A prothrombin mutation. Probably, hypercoagulability mechanisms of TB, added to mutation of prothrombin gene increase the risk of CVT.

KEY WORDS: cerebral venous thrombosis, tuberculosis, prothrombin gene mutation.

CASE

A 38 years old black man was admitted to Neurological Emergency Service, and signed informed consent. He reported that he had suddenly presented abrupt right hemiparesis, and hemiparesis. He became better with treatment after one month of hospitalization. On this period, it was also diagnosed pulmonary tuberculosis, by chronic cough, fever, weight loss and acid-fast bacilli on smear of sputum and testicle tuberculosis by a scrotal ultrasound that showed an inflammatory mass of testicle and epididymis, which became better after treatment with isoniazid, rifampicin (7 months), and pyrazinamide (2 months). Corticosteroids were used in usual doses. Imaging tests revealed expansion of superior sagittal sinus, with venous congestion, that enhanced with contrast administration, and increased attenuation area in left parietal lobe. Hypersignal in the left parietal area...
in FLAIR and sagittal sinus with irregular signals were seen in magnetic resonance imaging (MRI) (Figs 1,2,3,4). During hospitalization, cerebral spinal fluid (CSF) examination showed: 178 cells (81% lymphocytes, 11% monocytes, 8% neutrophils), protein 132 mg/dl, glucose 30 mg/dl, adenosine deaminase (ADA) 11.1, suggesting tuberculous meningitis. A spinal fluid culture was negative. Rheumatologic tests, including FAN/Hep2/Anti-DNA/ANCA/Cri/anti-cardio/Anti-ENA were negatives, as well VDRL, Anti-HIV serology and thyroid function tests. Patient was heterozygous for G20210A prothrombin mutation, and factor V Leiden was negative. He has no familiar history of venous thromboembolism. Treatment was successful 6 months anticoagulation (warfarin), confirmed by an Angio-MRI performed after 6 months, which showed complete resolution of thrombosis in sagittal sinus.

On his last outpatient visit, after 40 months, the patient pretend minimal right hemiparesis, and no one drug was in use.

DISCUSSION

CVT can be idiopathic or secondary to infectious and non-infectious etiologies. Infection-related CVT is usually due to bacterial (mainly pneumococcal), fungal or parasitic infections. Tuberculosis was associated to CVT in few patients reported on literature. Two of them have disseminated TB with no involvement of central nervous system, one has only pulmonary disease, and another had chronic granulomatous meningitis.

Finding only 4 cases of CVT related to TB is curious. TB is the main infectious cause of death worldwide. M. tuberculosis infects one third of world population and kills almost 3 million people each year. The pathophysiologic process that can explain the relation between TB and CVT includes: (1) injury to endothelium, (2) alterations in normal blood flow, and (3) alterations in the blood coagulability. Blood stasis occurs because intracranial sinus is a low-pressure system without valve. Hypercoagulable state occurs in patients with TB, because they show increased platelet aggregability. Sard et al. found significant hyper aggregation in 88% patients with intestinal TB. Endothelium injury in intracranial veins may be consequence of the same mechanism, which occurs in arterial vessels by TB. Arteries running though the subarachnoid space may show obliterative endarterites with inflammatory infiltrates in their walls, and marked intimal thickening.

Despite the continuing description of new causes of CVT, it is very strange that the proportion of
unknown etiology remains high, in recent series between 20 - 35%. Infections constitute a major cause to CVT and TB prevalence is high. This association may be under diagnosed. A transition G→A at position 20210 is associated with elevated prothrombin concentration and thrombosis. People with mutation in this gene and presence of factor V Leiden mutation may increase 5 - 10 fold risk of venous thrombosis. However, both mutations when alone are not high risk factors for venous thrombosis, so lifetime anticoagulation is controversial. Some trials were done to prove that bacterial infection was associated with gene polymorphisms, such as factor V Leiden and factor II (prothrombin), but the result was negative. Prothrombin mutation seems to be more prevalent than factor V Leiden in Brazilian patients with cerebral venous thrombosis.

Finally, it is still not possible to find a connection between mutation in prothrombin gene and Mycobacterium infection, presented in our patient. Probably, hypercoagulability mechanisms of TB, added to mutation of prothrombin gene increase the risk of CVT.

REFERENCES