VARIABLE FMRI ACTIVATION DURING TWO DIFFERENT LANGUAGE TASKS IN A PATIENT WITH COGNITIVE DELAY

Sara Escorsi-Rosset1, Lauro Wichert-Aná2, Marino Muxfeldt Bianchin3, Tonicarlo Rodrigues Velasco4, Américo C. Sakamoto5, João Pereira Leite6, Antonio Carlos Santos7, Dráulio Barros de Araújo8

ABSTRACT - Functional MRI produces a more accurate localization of the language areas for epilepsy surgery purpose, but requires the patient cooperation. We report a 34 years-old woman with mental retardation who underwent two different verbal fluency tasks, category and word naming. We found a strong activation of the Broca’s area in the most difficult task. We suggest that a multi-task fMRI study could be successful in patients with cognitive delay.

KEY WORDS: fMRI, language, epilepsy surgery, cognitive delay.

Epilepsy surgery is usually an elective procedure in which the complete resection of the epileptogenic zone is of paramount importance. Moreover, potentially eloquent cortex should be preserved, avoiding new, unacceptable deficits to the patient1. In such procedures, the prediction of whether a given cortical area would be deemed essential for language processing is of great importance for presurgical workup. For that purpose, the Wada test remains as the gold standard2,3. However, it requires an invasive angiographic procedure and has technical difficulties related to the significant variability of vascular anatomy4. Also, it anesthetizes a large brain area only classifying patients in left, bilateral or right language dominants, and does not produce an accurate assessment of language areas.

There is a growing trend toward the use of functional MRI (fMRI) instead of the Wada test. fMRI has the advantages to be non-invasive, carrying less morbidity and assessing a more accurate mapping of the language areas. Unfortunately, BOLD-fMRI studies of language require cooperation from epileptic patients, which frequently have behavioral, cognitive and motor disabilities.

We aim to report both the feasibility of the fMRI study and the variability in the fMRI activation with two different, clinically used, language paradigms in an epileptic patient with mental retardation.
CASE

A right-handed 34 years-old woman started with sporadic epileptic seizures at two years of age. One of these events was prolonged characterizing status epilepticus. At 21 years, she developed highly frequent seizures and initiated the use of antiepileptic drugs (AEDs). She became pharmaco-resistant to AEDs and was referred to our epilepsy surgery center for a presurgical workup.

The 1.5T MRI showed right predominant bilateral mesial temporal sclerosis and the computed tomography (CT) showed a calcified neurocysticercotic lesion in the posterior region of right temporal lobe. Surface video-electroencephalographic monitoring (VEEG) showed normal background activity with 81% of interictal spikes in the right sphenoidal electrode and 19% in the left one. The patient had eight complex partial seizures shared in two semiological and EEG patterns suggesting independent seizure onset in bilateral temporal lobes. Neuropsychological test evidenced mental retardation and diffuse cognitive impairment, with estimated IQ of 64. Wada test showed left hemispheric dominance for speech and bilateral cognitive reserve for memory, which could allow surgical procedure in any of the temporal lobes.

fMRI comprised of two language tasks of word generation. The patient underwent “dry run” training before the scanning to ensure task compliance. The patient performed two paradigms: category and word naming. In the first task, the patients were asked to brain-generate (in complete silence) as many elements as possible from a specific category (animals, fruits, colours, objects and places) until cued to stop^5. In the second task^6, patients were asked to think silently of as many words as possible starting with a specified letter (M, A, E, C and S). In both paradigms six blocks 27 seconds of rest were interleaved with five blocks of activity. fMRI data set was obtained in EPI-BOLD sequences, and was co-registered with high spatial resolution images (3D gradient-echo T1 weighted sequence), covering the entire brain. Individual fMRI data were analyzed with a General Linear Model (p<0.00001), using the Brain Voyager QX™. The analysis revealed no fMRI brain activation in the main language areas during category naming (Figure row 1), while word naming activated left inferior frontal gyrus and superior temporal gyrus (Figure row 2). Subcortically, the left thalamus was also activated.

Finally, the patient underwent invasive EEG with deep electrodes confirming the bilaterality of seizure onset, thus precluding epilepsy surgery.

DISCUSSION

In this case report we showed very distinct results from two different language paradigms, generally used in the clinical setting for fMRI. Additionally, we showed that mental retardation did not preclude the fMRI feasibility in the present patient.

Several fMRI studies have applied different methods for the lateralization of linguistic functions. The choice of a suitable method should follow at least three criteria: robustness (results do not vary with parameters), the capability of inter-subject comparison, and reproducibility^7. We used two paradigms of verbal fluency among several that have commonly been employed worldwide, and the choice of a specific one depends on the preference of each investigator.
While category naming did not activate language centers of our patient, the word naming resulted in a strong activation. This fact was remarkable once this last paradigm has a higher degree of difficulty considering the cognitive deficit of the patient.

We believe that applying more than one paradigm for language may compensate eventual deficiencies of a single task, being an alternative to avoid the weakness observed in isolated paradigms. This has a particular role when considering each individual as exposed to different extrinsic and intrinsic factors during his/her lifetime, configuring each one as a unique neural network. Therefore, different individuals certainly use different strategies to accomplish specific tasks. In this setting, fMRI seems to be a powerful instrument to study these particularities, and is far superior to the Wada test.

Acknowledgments – This study was supported by “The State of São Paulo Research Foundation”, FAPESP (Grant 04/14004-CinAPCe Program).

REFERENCES