HORNER’S SYNDROME AFTER BLUNT CERVICAL AND CHEST TRAUMA

Case report

Wellingson Silva Paiva1, Robson Luis Oliveira De Amorim1, Wagner Malago Tavares1, Eduardo Joaquim Lopes Alho1, Brasil Ping Jeng1, Eberval Gadelha Figueiredo2

ABSTRACT - Horner’s syndrome is the triad of miosis, ptosis, and anhidrosis, resulting from disruption of the sympathetic pathways. This article describes an uncommon case of Horner’s syndrome in a 22-year-old man after blunt trauma to the neck and chest without carotid artery dissection. The patient was brought to the emergency service after motorcycle fall. Neurologic examination revealed a patient presenting the score 15 at Glasgow Coma Scale. The left eyelid was 1–2 mm lower than the right. Carotid Doppler and angiotomography were undertaken and revealed no abnormalities of the carotid artery. CT disclosed a mediastinal hematoma extending to the left apex, compressing the left sympathetic chain. The understanding of this clinical entity may help the surgeon to make a better differential diagnosis in trauma patients in whom prompt diagnosis is critical to stabilize the correct treatment.

KEY WORDS: Horner syndrome, trauma, etiology.

Horner’s syndrome consists of a triad of symptoms (miosis, ptosis, and anhidrosis) resulting from disruption of the sympathetic pathways somewhere between the brain and the eyes. In blunt trauma, it is usually associated with carotid artery dissection. Although the individual signs of Horner’s syndrome do not constitute an emergency, the internal carotid artery proximity to the sympathetic ganglia makes Horner’s syndrome a potential vascular emergency1-3.

We present a case of Horner’s syndrome in a 22-year-old man after blunt trauma to the neck and head unrelated to carotid artery dissection.

CASE

A 22-year-old man was brought to the emergency room after motorcycle fall, with history of transitory loss of consciousness. In the admission, he was alert and orientated, the carotid pulses were symmetric, regular in rate and rhythm, with no bruits and the chest and the abdomen had no signs of abnormalities. The patient related moderate cervical pain but no neurological deficits were noticed except for the asymmetric pupils that measured 5 mm on the right and 2 mm on the left side, both presenting direct and consensual reflexes. The left eyelid was 1–2 mm lower than the right (Fig 1), the extraocular movements were intact and the cranial nerve examination was normal. The chest X-ray did not re-
revealed any rib, sternal fractures or mediastinal enlargement. Skull computed tomography (CT) showed no abnormality so as the carotid ultrasonography Doppler and the angiography of the head and neck. Cervical spine CT showed a fracture of left C7 transverse process and additional investigation with chest CT disclosed a mediastinal hematoma extending to the left lung apex, exhibiting mass effect over surrounding structures without signs of aortic dissection (Fig 2). A conservative management was adopted and the patient left the hospital three days later but still with the neurologic signs. Follow up four weeks after discharge revealed a normal neurologic examination and no complaints.

DISCUSSION

Horner’s syndrome is an uncommon occurrence in all age groups (0.08% of blunt trauma patients)². Diagnosis is namely based on clinical findings, and after careful history and examination, the physician must decide whether further investigation is necessary. There is a wide variety of conditions that may cause this syndrome, postsurgical and iatrogenic causes comprise most of the cases³⁻⁸. Penetrating neck injuries, cervical spine dislocation and birth trauma are the major factors that lead to traumatic injury to the oculosympathetic pathway⁹⁻¹⁰. A history of trauma preceding these findings should prompt the clinician to consider that the carotid artery, which lies directly over the sympathetic chain in the neck, may have been injured, particularly if signs of head or neck trauma are present⁹⁻¹⁰. The investigation of choice considered by some authors is a magnetic resonance imaging and angiography scan of the head and neck¹⁰. Therefore, to exclude carotid injury the authors performed an ultrasonography Doppler and an angiotomography what seems to be less invasive and with a high sensitivity. The carotid dissection diagnosis implies an emergent condition that can lead, if misdiagnosed, to major catastrophes including massive ischemic stroke, even in a patient with minor symptoms at admission¹⁰.

In this current case further investigation showed a mediastinal and left lung apical hematoma which probably caused compression of the sympathetic ganglia, as the clinical findings appeared in first day of trauma. When it comes to blunt chest trauma, there is an association with fractures of the first rib⁷⁻⁹, not seen in this patient. The fracture of the left C7 transverse process could explain the cervical pain, therefore, the correlation of this radiological finding with the hematoma can not be affirmed. Mediastinal hematoma due to trauma is associated with sternal fracture, aortic dissection and extrapericardial cardiac tamponade¹²⁻¹⁴. Before the era of multidetector helicoidal CT, performed in this patient, the gold standard to investigate aortic dissection was angiography¹⁴. Asensio-Sánchez et al.¹⁵, described a case of Horner’s syndrome due to an hematoma in the neck which was producing tracheal deformity and stenosis. A chest hematoma causing such syndrome was described by Banks et al.¹⁶ and the signs were caused by a tension hemothorax, a life-threatening condition. In our case, the patient was hemodynamically stable and no surgical intervention was necessary. This report illustrates a condition that can be seen in the trauma emergency department and shows that a
meticulous and sequenced investigation with proper complementary exams is necessary because such signs can be just the “iceberg tip”.

In conclusion, Horner’s syndrome is a very rare condition after mild neck and chest trauma. The understanding of this clinical entity may help the surgeon to make a better differential diagnosis in trauma patients in whom correct and prompt diagnosis can be lifesaving.

REFERENCES