CLINICAL-RADIOLOGICAL ASPECTS OF PRIMARY EXTRACRANIAL MENINGIOMA OF THE ETHMOID SINUS IN A CHILD

José Roberto Lopes Ferraz-Filho1, Valdeci Hélio Floriano2, Leonardo Franco Felipe2, José Alves Rocha-Filho3

Meningiomas are tumors of benign histological nature which represent 13 to 26% of all primary intracranial neoplasia1. Approximately 20% of intracranial meningiomas present extracranial dissemination at sites such as the orbit, middle ear, nasal cavity, nasopharynx and paranasal sinuses2. Primary extracranial meningiomas are histologically identical to intracranial meningiomas. They usually occur in 40 to 60-year-old patients and are rare in the pediatric age group. Primary extracranial meningiomas represent 1 to 2% of all meningiomas1-5.

We report the case of a 13-year-old girl with a primary extracranial meningioma of the ethmoid sinus, including the main findings of the imaging examination and a brief review of the literature.

CASE

A 13-year-old girl was referred to our service with a 30-day history of constant and strong frontal headache, nasal obstruction, and progressive proptosis of the left eye without signs of phlegmon or alterations in visual acuity.

At rhinoscopy, a lesion of the soft tissues was observed occupying the left superior meatus of the nasal cavity with a smooth pink surface.

In light of these findings, a CT of the skull and face sinuses was performed showing an extensive hypodense non-calcified lesion measuring 2.0x2.0 cm located in the left ethmoid sinus. The lesion presented heterogeneous iodinated contrast enhancement and demonstrated remodeling of the adjacent bone structures (Fig 1).

MRI of the facial sinuses was requested to evaluate the involvement of the soft structures as well as the invasion of the adjacent structures and resection planes. The lesion in the left ethmoid sinus was hypointense in T1 and T2-weighted sequences, with heterogeneous paramagnetic contrast enhancement, determining a mass effect on the adjacent structures, lateral divergence of the medial rectus muscle of the left orbit, but without invasion (Fig 2). Additionally, maxillary and sphenoidal sinus disease was observed.

The patient was submitted to excision of the lesion by external and endoscopic ethmoidectomy with a complete cure of the exophthalmus in the postoperative period. Diagnosis of atypical meningioma was attained by histopathological examination.

DISCUSSION

The present study shows the clinical and imaging aspects of primary extracranial meningioma of the ethmoid sinuses in a child. Primary extracranial meningioma of the nasal cavity or paranasal sinuses is rare, especially in children. The paranasal sinuses most commonly affected are the frontal, maxillary, ethmoid and sphenoid sinuses2,3,5.
According to published data, the first description of primary extracranial meningioma of the paranasal sinuses was in 1931, after which 40 cases have been described. And only three cases involved the ethmoid sinuses with only one case in the pediatric population. The symptoms are specific for paranasal sinuses or related to the involvement of adjacent structures. The most common complaints are sinusitis, nasal mass and epistaxis. Nasal obstruction, headaches and proptosis are also frequent complaints as were observed in the current case.

Although meningioma is a tumor generally found at an intracranial location derived from meningocytes found in the meninges, in approximately 20% of cases it presents an extracranial extension due to continuity. The nasal cavity, as well as the paranasal sinuses, does not have this type of tissue, hence the rarity of the involvement of these regions. Some theories have been proposed to explain the primary origin of meningiomas at these locations. The main ones are related to: a) the presence of arachnoid cells in nerve sheaths or in vessels where they emerge from the central nervous system, b) the migration of tissue from the meninges to extracranial regions during embryogenesis, c) traumatic events or intracranial hypertension that displaces arachnoid cells and finally, d) undifferentiated mesenchymal cells.

Meningiomas in children tend to present atypical characteristics in imaging examination, including cysts, hemorrhage, aggressiveness and uncommon locations.

Computed tomography better demonstrates the presence of intratumoral calcification, the hyperdense aspect of the lesion and homogeneous iodinated contrast enhancement. The MRI supplies more precise information related to the extension and tumoral invasion of adjacent structures, characterized by an increased T1 and T2-weighted signal intensity and with the same pattern of the contrast enhancement of CT. However, in the case described herein, the lesion presented a heterogeneous contrast enhancement, hypodense aspect at CT and without intratumoral calcification, which may be related to the atypical aspects of meningiomas in children.

The differential diagnosis of extracranial meningiomas located in the nasal sinus region, should include mucocele, olfactory neuroblastoma, carcinoma, hemangioma, sarcoma and angiofibroma.

Treatment of primary extracranial meningioma of paranasal sinuses is based on total surgical resection of the lesion through endoscopy or open surgery. When it is not possible to perform total surgical resection of the lesion as a result of the complex anatomy of both nasal cavity and paranasal sinuses, adjuvant therapeutic options is restricted to radiation therapy and chemotherapy.

In general, the prognosis is good. In cases of tumor recurrence, the tumor usually arise in the same anatomic site as the primary tumor and probably represent the residual disease rather than recurrent tumor.

In the present case, the patient was submitted to a total surgical exeresis of the lesion through an external ethmoidectomy and endonasal combined approach. There was no evidence of tumor recurrence during the two years of post-surgical follow-up.

REFERENCES