SUBDURAL HAEMATOMA IN A PATIENT WITH MENINGIOMA

Paulo Valdeci Worm, Marcelo Paglioli Ferreira, Nelson Pires Ferreira, Fernanda Cechetti

Non-traumatic subdural haematomas are very rare especially those associated with intracranial meningiomas. Intracranial tumors hemorrhage occurs in 39% of all cases. They are a malignant pathology such as metastatic tumors or gliomas. They usually present with seizures hemiparesis visual field loss aphasia or other focal symptoms.

We report a case of meningioma of the skull base associated with subdural haematoma after a Valsava maneuver.

CASE

A 64-year old male patient, smoker, had a loss of consciousness with mild headache during a spirometric exam. He was medicated with analgesics and remained with headache for 12 hours and was discharged from hospital. He persisted with chronic headache and developed a gradual confusional state and left hemiparesia. After the initial episode, five days after the spirometric test, he returned to the hospital for a computed tomography (CT) of the head (Figs 1 and 2). The CT showed a right subdural haematoma with a fresh clot in the anterior skull base with bone thickness of the anterior fossa besides meningioma of the falx with adjacent edema.

The patient had no prior history of trauma or alcoholism. He was using (AAS) 200 mg/day. Coagulation tests were normal.

A right frontal osteoplastic craniotomy was performed draining the haematoma, and during the same surgical procedure the tumor was removed using microscopy.

A dark, thick, red blood clot was drained. During the surgical drainage of the subdural haematoma two findings were observed by the surgeon: 1) the homolateral side of the subdural haematoma presented with greater vascular density. 2) the clot surface on this side showed a variable aspect, suggesting ac-
Subdural haematoma with meningioma

Worm et al.

The histopathological diagnosis was meningioma. Right after drainage his motor state improved but he remained confused. He remained in hospital for seven days. When he was discharged from hospital he was partially orientated and had no focal neurological deficit.

DISCUSSION

Benign intracranial tumors like meningiomas rarely present with hemorrhage and the reported incidence is 1.3% of all meningiomas. The higher incidence of this association was found by Niiro et al., who described six cases of hemorrhage in a series of 298 patients with intracranial meningiomas. Eleven were situated in the convexity. Other authors have hypothesized that the development of a meningioma could be secondary to chronic irritation of the meninges exerted by chronic subdural haematoma.

Intracranial hemorrhage has less associations with benign tumors than with malignant ones. Malignant metastatic melanoma, choriocarcinoma and bronchogenic carcinoma are associated with intracranial hemorrhage and are widely discussed in the literature. Chronic subdural haematoma is rarely associated with meningioma.

Itoyama et al. described a patient with bilateral subdural haematoma with a left sphenoid wing meningioma. Sinha and Dharker presented a case of a meningioma of the right occipital convexity associated with a left frontoparietal subdural haematoma. Pozzi et al. reported a right hemisphere convexity subdural haematoma associated left parietal meningioma. This contralateral injury is highly controversial. It could be due to small traumas caused by convulsions in clinical seizures of meningiomas.

Tanaka et al. correlated the localization and the histological subtype of meningiomas and a higher probability of the association with chronic subdural haematoma.

Some CT findings can help correlate a meningioma with subdural haematoma, such as: 1) bone alteration; 2) focal cerebral distortion and cerebral perifocal edema due to the presence of meningioma inside the subdural clot collection; 3) potential differences in the signal density between the different areas measured for the Hounsfield scale.

In the case reported we found bone alterations at the meningioma implantation site, evidence of a rich and vascular density in the homolateral side far from the haematoma; moreover, we found more macroscopic characteristic changes on this side.

tive bleeding (Fig 3). An en bloc surgical excision of the clot and the tumor were performed. The histopathological diagnosis was meningioma. Right after drainage his motor state improved but he remained confused. He remained in hospital for seven days. When he was discharged from hospital he was partially orientated and had no focal neurological deficit.
Subdural haematoma with meningioma
Worm et al.

These findings call attention to the fact that the possible etiology of the hemorrhage had its genesis in a Valsalva maneuver that ruptured during the manipulation of forced expiration triggered for the spirometric examination. The patient probably already had the intracranial haematoma, and the use of AAS may have been one of the facilitating factors. This has not yet been described in the literature. The mechanisms of haematoma formation associated with the Valsalva maneuver are poorly understood but Shojima et al.10 mentioned that events such as seizures or a rapid change in blood pressure may also act as etiologic agents for hemorrhage. In the CT the homolateral area near the haematoma was more clearly shown by the contrast beyond the presence of surrounding cerebral edema (Fig 3).

Although several hypotheses have been described to explain the bleeding in meningiomas, so far this event has been rare. We do not have a satisfactory explanation for this phenomenon. Besides observations of the histological properties and radiological change, possibly macroscopic observation of the tumor and the adjacent vasculature during surgery could, in future, help us reveal the histopathogenesis of the phenomenon.

REFERENCES