Microsurgical coil removal after coiling a carotid bifurcation aneurysm

Daniel Holanda Christoph¹, Igor de Castro², Sávio Boechat Primo de Siqueira³, Mariangela Barbi Gonçalves¹, Rodrigo Dias Guimarães¹, João Klescoski¹, Jorge Luiz Amorim Correa¹, Orlando Maia¹, José Alberto Landeiro⁴

Endovascular treatments have evolved rapidly in the past decade, and have become established as a treatment option for the management of cerebral aneurysms¹. Detachable coils represent a major technological advance in aneurysm treatment, although coils are not suitable for the treatment of all aneurysms. As the use of endovascular techniques, especially Guglielmi detachable coils, becomes more widespread, growing numbers of patients will require surgical intervention after endovascular treatment of their intracranial aneurysms². Despite the advances in endovascular technology, all techniques can be associated with treatment failures and serious complications. Increasingly, these patients will present to neurovascular centers for evaluation and further management, including those for whom endovascular treatment was completely unsuccessful, those who have been partially treated, and those who require surgery to deal with a complication of an endovascular treatment. The former group will simply undergo surgery and present no new challenge to the neurosurgeon. However, the latter two groups will require surgical clipping of aneurysms that were previously coiled. This report describes surgical coil removal in a patient with a large carotid bifurcation aneurysm who had undergone coiling, after which the coil mass protruded into the parent artery, obstructing the middle cerebral artery flow.

CASE

A 62-year-old woman presented to our institution with a one-year history of left-sided headache and complaining of decreased visual acuity. Cranial magnetic resonance imaging scans showed a mass suggestive of a left carotid artery aneurysm. A digital subtraction angiogram revealed a 10 × 14 mm left carotid artery bifurcation aneurysm (Fig 1). After the angiogram, the patient was offered both surgical and endovascular treatment options, and was informed of the risks and benefits of each procedure. The patient and

![Fig 1. Cerebral angiographic views showing a left carotid bifurcation aneurysm. Oblique (A) and lateral (B) views.](image-url)

Correspondence
José Alberto Landeiro
Avenida Monsenhor Ascânio 501 / 204
22621-060 Rio de Janeiro RJ - Brasil
E-mail: jalandeiro@gmail.com

Received 13 June 2009
Received in final form 7 October 2009
Accepted 19 October 2009

MICROCRURGIA APÓS EMBOLIZAÇÃO DE ANEURISMA DE BIFURCAÇÃO DE ARTÉRIA CARÓTIDA

¹Department of Neurosurgery, Hospital de Força Aérea do Galeão, Rio de Janeiro RJ, Brazil; ²Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, USA; ³Department of Neurosurgery, Hospital São José do Avai, Itaperuna RJ, Brazil; ⁴Chief of Department of Neurosurgery, Hospital de Força de Aérea do Galeão, Rio de Janeiro RJ, Brazil.
her family elected coil embolization of the aneurysm, although the neurosurgical team informed the high risk to coil this wide neck aneurysm.

With the use of local anesthesia, a 7-French guide sheath was inserted into the right common femoral artery. Systemic heparinization was established. The aneurysm was catheterized with a 0.014-inch microcatheter, advanced over a microwire. A combination of complex and helical coils was inserted and packed (Fig 2A). At the end of the procedure, the coil mass protruded into the parent artery of the aneurysm and obstructed the middle cerebral artery (MCA) lumen (Fig 2B). The decision was made to insert a Neuroform stent (Boston Scientific, Natick, MA) to restore the MCA flow, but it was unsuccessful, and angiography showed obstruction of the M1 segment of the MCA. In an attempt to restore the flow, we decided to remove the coil mass with a microsurgical approach.

Operative procedure

The systemic heparinization was reversed with protamine. Intraoperative mild hypothermia and barbiturate cerebral protection were established. A left pterional craniotomy was performed. Care was taken to preserve the superficial temporal artery. After dural opening, the sylvian fissure was opened and the internal carotid artery (ICA) was exposed for proximal control. The aneurysm was identified at the carotid artery bifurcation. The MCA was clearly occluded, and the coil mass was visible within the aneurysm. Proximal control was established by temporarily clipping the ICA and the anterior cerebral artery, isolating the aneurysm (Fig 3A). The aneurysm dome was incised using a number 11 blade and the coil mass was then removed with gentle traction using microforceps (Fig 3B). Care was taken not to pull too vigorously to avoid tearing the aneurysm sac from the parent artery. After the coils were removed, a permanent clip was applied to the aneurysm neck (Fig 3C).

Postoperatively, the patient developed a left middle cerebral artery infarction, and a decompressive craniotomy was performed. She was discharged with right hemiparesis and aphasia for rehabilitation, with continuous improvement of her neurological deficit. Three months after surgery the patient had mild aphasia and hemiparesis.

DISCUSSION

Coil embolization has become a common treatment for many intracranial aneurysms, and its safety and efficacy have been demonstrated. It is now firmly established as a treatment option for the management of ce-
Microsurgical coil removal after carotid bifurcation aneurysm
Christoph et al.

Cerebral aneurysms. With advances in coil, stent, and catheter technology, more aneurysms are treated with endovascular techniques. However, detachable coils cannot be used with good results in all aneurysms, particularly those with wide necks, which can allow the herniation of the coils back into the parent vessel.

With endovascular advances, an increasing number of cerebral aneurysms are treated with this technique and, as a consequence, cerebrovascular surgeons will confront an increasing number of complications related to coil embolization. Several authors have reported their experiences in the surgical treatment of subtotally embolized or recanalized aneurysms. However, there have been few reports of the surgical techniques used to manage endovascular complications.

Coil protrusion into the parent artery of an aneurysm is one of the most feared complications of endovascular treatment with detachable coils. The most crucial steps in the management of an untoward event in the angiography suite are the actions taken during the endovascular procedure, the recognition of vessel occlusion and that the flow cannot be restored with endovascular techniques, and rapid transport to the operating room to facilitate a favorable outcome. Barbiturates and mild hypothermia are essential surgical adjuncts, protecting the brain in risk. During the exposure, the superficial temporal artery must be preserved in case a bypass is required. The basic principles of aneurysm surgery are highly relevant in the operative management of these patients, with maximal exposure and early acquisition of proximal and distal control of the afferent and efferent vessels, using temporary occlusion to achieve complete aneurysm trapping, and extracting the coil mass, taking care not to tear the parent vessel during the extraction, allowing satisfactory clipping of the aneurysm, and restoring the vessel flow.

In our patient, microsurgical techniques were used to reverse the occlusion of the MCA by a coil mass, trying to save the ischemic brain penumbra after restoring the flow, mitigating the cerebral damage. The patient improved her neurological deficits, even though she did not present a favorable clinical outcome neither recovered the speaking.

This report emphasizes the importance of having a cerebrovascular team capable of dealing with endovascular treatment failures. As the use of endovascular techniques are becoming more widespread, growing numbers of patients will require surgical intervention.

REFERENCES