mg (normal range 78-280), confirming the diagnosis of GM1 Gangliosidosis.

Type 3 GM1 gangliosidosis is characterized by onset around the second decade of life with slowly progressive extrapiramidal signs, such as dystonia and parkinsonism. There is also a high prevalence of gait disturbance and dysarthria. Other symptoms are short stature, bone abnormalities, cognitive impairment, ataxia and cardiac disorders. Orofacial dystonia is a common feature of type 3 GM1 gangliosidosis, with a prevalence of 87.5% according to a recent report.

Facial dystonia with prominent involvement of oromandibular muscles is a frequent manifestation of neuroleptic induced movement disorders. However, there is also a number of dystonia syndromes in which oromandibular involvement occur, and their presence should alert the clinician to their possibility (Table). We suggest that in patients with early-onset dystonia, the occurrence of facial grimacing should lead to the consideration of type 3 GM1 gangliosidosis, particularly when associated with speech and cognitive impairment, gait disturbances and bone abnormalities.

REFERENCES

Huntington’s disease presenting as posterior cortical atrophy

Leonardo Caixeta

Neuroimaging and neuropathological studies on Huntington’s disease (HD) have historically focused on striatal atrophy. In posterior cortical atrophy (PCA), there is a progressive impairment of high-level visual functions and parietal damage. The conundrum of PCA is that while the clinical presentation is relatively homogeneous, the nosological status remains something of a puzzle. We report a case of HD presenting as PCA.
A 67-year-old right-handed retired seamstress presented to the Memory Clinic with a history that began 11 years ago when she presented with depressive symptoms featured by tearfulness, sadness, insomnia, loss of weight. One year after, she began with difficulties putting line on the needle and grasping objects (she stopped cutting clothes to sew), i.e. she had difficulty in performing manual tasks under visual guidance bilaterally (optic ataxia). Besides that, she presented jerky intrusions when attempting to perform smooth pursuit eye movements (ocular apraxia) and could not notice two objects at the same time (simultanagnosia).

Two years later, she began with chorea on her upper and lower limbs and face that worst gradually. The visual processing deficits were interpreted in the beginning as part of Alzheimer’s disease. Until six years ago, most of her activities of daily living were spared. Two years ago became demented, totally dependent upon caregivers and restricted to wheelchair because of gait instability and falls.

She has no familiar antecedents of Huntington’s disease, notwithstanding both her parents deceased when they were young (father: 33 year-old; mother: 28 years-old).

Present neurological exam revealed important chorea in head and limbs, severe dysarthria, dystonia in both hands, brisk symmetric tendon reflexes with left Babinski sign, Balint syndrome. On cognitive examination, she scored 8 out of 30 points on the MMSE.

Patient has genetically confirmed CAG repeats in the abnormal range (1 allele with 41 repeats and other with 18). The MRI showed focal cortical bilateral atrophy in occipital and parieto-occipital lobes (Figure), as well as bicaudate atrophy.

The primary site of pathology in HD is the caudate nucleus, however cortical changes are also commonly reported\(^1\). While many researchers have studied pathology in the frontal lobe, little attention has been paid to posterior cortical regions. Recent neuroimaging studies have documented prominent progressive cortical thinning in parietal and occipital cortices, even in the years preceding motor onset\(^3\). Some HD patients may preferentially target posterior cortical regions, particularly the angular gyrus which has a significant projection to the caudate nucleus in primates\(^2\). Visuomotor integration deficits may be evident many years before the clinical onset of HD\(^2\).

We describe a functional impact of posterior cortical pathology on the clinical phenotype of HD, in an early phase of the disease, in line with imaging data of posterior atrophy. The clinical phenotype of HD is far more complex and variable than depictions of it as a progressive movement disorder dominated by neostriatal pathology represent. This is the first HD case report presenting as a PCA phenotype in the early premotor phase of HD. Therefore, HD should be remembered as a possible etiology when considering PCA syndrome.

REFERENCES

Figure. MRI (axial and sagittal slices weighted in T1) showing focal bilateral occipital and parieto-occipital atrophy, respectively.