Extradural cavernous hemangioma of thoracic spine

Apio Antunes¹, Mateus Felipe Lasta Beck², Atahualpa Caue Paim Strapasson²,
André Cerutti Franciscatto², Mateus Franzoi²

Cavernous hemangioma of the central nervous system is a vascular malformation which is a developmental hamartoma, also known as cavernoma or cavernous malformation or venous angioma¹.

Cavernomas may affect any segment of the neuraxis. Most of these malformations are intracranial: supratentorial compartment is a site usually affected²,³. Pure spinal epidural cavernomas represent approximately 12% of spinal cavernous anomalies⁴ and the thoracic segment is the most frequently affected⁵. There are approximately 80 cases of epidural cavernous hemangioma published in the literature⁴,⁵.

We report on a case of thoracic extradural cavernous hemangioma, with emphasis on the clinical aspects.

CASE

A 63-years-old female caucasian patient with a previous history of cryptogenic epilepsy was referred to our emergency department with complaints of a one year history of gait ataxia, numbness and dysesthesia in both lower limbs. In the last 2 months, she also noticed reduced strength in the lower limbs.

Neurological examination showed reduced strength in the lower limbs, grade 4/5 in the right lower limb and grade 3/5 in the left one. There was reduced sensation for all sensory modalities below the T10-11 dermatomes. There was also lower limb hyperreflexia and hypertonia, with bilateral extensor plantar response.

An MRI showed an epidural space-occupying lesion involving the T9-T10 spinal canal levels and extending to the T9 left foramen, with an intense and homogeneous contrast enhancement (Figure).

The patient was submitted to a T9-T10 laminectomy, including a T9 left foraminectomy. A posterior soft and reddish epidural mass with a good cleavage plan was completely removed. The patient evolved with partial improvement of sensibility in both lower limbs and strength.

Histological examination revealed thin-walled blood vessels lined with a single layer of endothelial cells, surrounded by connective tissue. The microscopic appearance was compatible with cavernous hemangioma.

Figure. Preoperative MRI. Sagital T2-weighted image showing isodense lesion in the posterior extradural space at T9-T10 with ventral dislocation of the spinal cord.
DISCUSSION

Cavernoma is a benign tumor and it is considered a dysplasia of the vessels-forming mesoderm. Cavernous hemangiomas in the vertebral, extradural, intradural extramedullary and intramedullary spaces are responsible for 3 to 16% of spinal vascular anomalies.

Extradural cavernous hemangioma represent 4% of all spinal epidural lesions. Modern diagnostic imaging techniques are increasing the number of diagnosis and its frequency may be more than previously reported in the medical literature.

There are four clinical syndromes described: slow and progressive spinal cord syndrome, which is the most common form; acute spinal cord syndrome; back pain; and radiculopathy.

Imaging diagnostic exams such as spine X-rays, myelography, CT and MRI are important for evaluating the relationship of the lesion with the surrounding anatomic structures. Currently, MRI is the modality of choice.

The treatment for these lesions is total removal of the tumor with microsurgical technique.

REFERENCES


HEMANGIOMA CAVERNOUS EXTRADURAL DA COLUNA TORÁCICA

Neurosurgical Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre RS, Brazil:
1Head of Neurosurgical Unit, Associate Professor of Neurosurgery, FAMED, UFRGS; 2Resident of Neurorsurgery.

Correspondence: Apio Antunes - Unidade de Neurocirurgia / Serviço de Neurologia do HCPA - Rua Ramiro Barcelos 2350 / 2° andar - 90035-903 Porto Alegre RS. E-mail: apioantunes@gmail.com

Received 13 February 2011. Received in final form 31 November 2011. Accepted 7 April 2011.

Bilateral traumatic avulsion of abducens nerve

Bruno S.C. Lopes¹, Lazaro L.F. do Amaral¹, Higor G. Bezerra¹, Ricardo M. Rogério¹, Antônio A. Zambon²

A 45-year-old previously healthy woman suffered a head trauma with neck hyperextension during bike exercise, losing consciousness for about 24 hours. Upon awakening, she presented bilateral lateral gaze palsy and convergent strabismus (Fig 1). No bone fracture was detected on CT studies (not shown). This clinical picture persisted unchanged for over one year and a MRI study done at our service showed bilateral avulsion of the sixth cranial nerve using FIESTA sequence (Fig 2A, B, C and D).

The abducens innervates the lateral rectus muscle, which is responsible for the horizontal lateral movement of the ocular globe. It has a long course, beginning at its nucleus, on the ventral pons, going through the pre-pontine cistern to its dural entry point on the petroclival region, coursing through Dorello’s canal, beneath petroesphenoidal ligament, where it is covered by an envelope composed of one dural layer and one arachnoidal layer to the cavernous sinus, lateral to the internal carotid artery, reaching the superior orbital fissure and orbital apex. This long course makes it more susceptible to injuries.

Various different diseases can cause sixth nerve palsy, neoplastic and traumatic etiologies being more common in children, while vascular and idiopathic are responsible for the majority of cases in adult population.

Traumatic injuries of abducens nerve are a well-known consequence of severe head trauma, reported in

Fig 1. Convergent strabismus evidenced at physical examination 1-year after head trauma.