We recommend that patients who present with advanced neurological deficits should undergo early decompression even with adequate chemotherapy, since the intramedullary location and expansion of the cord with demyelinating destruction of tracts could worsen the clinical status.

REFERENCES

GRANULOMA INTRAMEDULAR SUGESTIVO DE TUBERCULOMA

1 Division of Neurological Surgery, Hospital das Clínicas, University of São Paulo, São Paulo SP, Brazil; 2 Division of Neurological Surgery, Hospital Santa Marcelina de Itaquaquecetuba, Itaquaquecetuba SP, Brazil.

Correspondence: Leonardo Wolting - Rua Tiradentes 976 / 01 - 84010-190 Ponta Grossa PR - E-mail: leonardowelling@yahoo.com.br

Received 6 March 2011, received in final form 27 June 2011. Accepted 5 July 2011.

Anchored fat-fascia graft for clival skull base reconstruction

Henrique Faria Ramos¹, Carlos Diógenes Pinheiro-Neto¹, Pedro Paulo Mariani², Fabrizio Ricci Romano¹, Arthur Cukiert²

Wound closure after posterior cranial fossa surgery through the clivus remains a challenge. A multilayer closure was suggested by some authors. On the other hand, a multilayer reconstruction may not be achieved in patients with clival defects; in this region, gravity may displace the inlay grafts downwards. We developed a technique that allows layered reconstruction of skull base defects, especially those located in the clivus.

CASE

A 14 years-old male presented with headache and a large craniopharyngioma was diagnosed. The lesion had a solid suprasellar component and a large cyst extending inferiorly towards the atlantoaxial region, compressing the medulla (Fig 1A).

The patient underwent to surgery through a trans-sphenoideal endoscopic approach. The bone of the sellar floor, posterior clinoidsand clival recess were widely removed using a high-speed drill (Fig 1B). The dura was then opened, followed by drainage of the craniopharyngioma cyst (Fig 1C and 1D). After the cyst drainage there was intense bleeding from the basilar venous plexus, which was managed using SurgicelTM.

Reconstruction was carried out using a lateral thigh fat graft, with the same shape as the dural defect, but longer. It was anchored with a 4.0 Vicrylsuture. The graft was reinforced with a rectangular layer of fascia lata, larger than the dural defect. A hole was made in the center of the fascia lata graft, allowing it to be slid up along the suture. The fat graft was pushed intradurally through the defect to pack the tumor cavity and form a buttress for subsequent layers (Fig 1E), followed by the underlay positioning of the fascia lata. The suture was gently tractioned until the fat-fascia graft was pulled beyond the bony margins and sealed the dural defect (Fig 1F).

After confirmation of the watertight sealing of the dural defect by a Valsalva maneuver the suture is cut (Fig 1G and 1H). Fibrin glue was then applied and an additional overlay layer of fascia lata was positioned. In addition, the reconstruction was reinforced with a pediculated nasoseptal flap positioned over the margins of the bony defect and Gelfoam. A Folley balloon catheter was left in place supporting the multilayer reconstruction. The patient was discharged on Day 7 postoperatively, with no headache or CSF leak.

DISCUSSION

Since the introduction of the nasoseptalpedicled flap there has been a sharp decrease in the incidence of postoperative CSF leaks. In addition to it, a multilayer reconstruction was adopted by many authors, aiming at higher efficacy and reliability in creating a watertight closure.

The anchored fat-fascia graft used in our patient al-
followed closure of a large skull base defect. The anchoring of the graft allows it to be pulled until it fits the dural defect, therefore creating a watertight barrier. This technique made use of CSF pressure to push the graft into the defect, keeping the seal tight and embedding the graft into the dural defect.

REFERENCES