Claude Bernard: bicentenary of birth and his main contributions to neurology

Claude Bernard: bicentenário do nascimento e suas principais contribuições à neurologia

Marleide da Mota Gomes¹, Eliasz Engelhardt²

ABSTRACT

Claude Bernard (1813-1878) followed two main research paths: the chemical and physiological study of digestion and liver function, along with experimental section of nerves and studies on sympathetic nerves. Curare studies were, for example, of longstanding interest. His profound mental creativity and hand skillfulness, besides methodology quality, directed his experiments and findings, mainly at the Collège de France. His broader and epistemological concerns were carried out at the Sorbonne and later at the Muséum national d’Histoire naturelle. His insight gave clues to define the "milieu intérieur", later known as "homeostasis", and grasp the brain complexity. Bernard followed and surpassed his master François Magendie who also fought against dogmas and laid the foundations of experimental medicine, and its main heinous tool – vivisection. Bernard created the methodological bases of experimental medicine, and collected honors as a renowned researcher.

Keywords: Claude Bernard, sympathetic nerves, homeostasis, epistemology, history of neurosciences.

RESUMO


Palavras-chave: Claude Bernard, nervos simpáticos, homeostasia, epistemologia, história das neurociências.

Bernard’s Early Life, Social Remarks, and Academic Career

Bernard was born in the village of Saint-Julien, near Villefranche-sur-Saône and Lyon¹. He was the son of a modest proprietor of vineyards and wine merchant. He received his early education in the Jesuit school of Villefranche (1821-1831), and then proceeded to the college, where he soon left to become an apprentice in a pharmacy, and periodic visitor to a nearby veterinary school in Lyon¹. From there, he went to Paris to consult a famous theater critic who did not valorize his inclination to write theater plays, but recommend him instead to exploit his pharmacy experience and enter medicine². He enrolled at the Faculty of Medicine of Paris (1834), and was approved for externship (1836), and the internship (1839), under the sponsorship of François Magendie (1783-1855), in the Hotel Dieu². As usual, even in the medicine course, he did not excel in his formal education.

¹Programa de Epilepsia, Faculdade de Medicina, Instituto de Neurologia Deolindo Couto, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ, Brazil;
²Setor de Neurologia Cognitiva e do Comportamento, Instituto de Neurologia Deolindo Couto and Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ, Brazil

Correspondence: Marleide da Mota Gomes; Instituto de Neurologia Deolindo Couto, Universidade Federal do Rio de Janeiro; Avenida Venceslau Braz 95; 22290-140 Rio de Janeiro RJ - Brasil; E-mail:mmotagomes@acd.ufrj.br

Conflict of interest: There is no conflict of interest to declare.

Received 11 September 2013; Received in final form 24 September 2013; Accepted 01 October 2013.
In 1841, Magendie discovered Bernard's dissecting skills and took him on as his laboratory assistant. In 1843, Bernard became physician, and in 1845 he married a Parisian wealthy doctor's daughter, but the unhappy couple was officially separated in 1870. However, much of his work was carried out between 1843-1858 in a little moist basement, with limited funding. In 1847, he was appointed Magendie's substitute at the Collège de France, and in 1855 he took the Chair of Physiology, held previously by Magendie and Laennec, and later occupied by Charles Edouard Brown-Séquard. Bernard took over also the chair of experimental physiology created for him at the Sorbonne University (1854), but in 1868 this chair was transferred from the Sorbonne to the Muséum national d’Histoire naturelle. He was also elected to the Academy of Sciences, the Academy of Medicine, and Imperial Senate – a nomination made by the emperor Napoleon III. In conclusion, he was extensively admired, including by the Brazilian emperor, Dom Pedro II.

However, some authors argue that he trivialized the significance of clinical and epidemiological studies, but Morabia gave Bernard’s mainstream thought: “He was realistic about statistics and comparative therapeutic trials and virulent against irrational medicine.” Much of his work was based on animal vivisection (Figure 1), and many people opposed to this shocking disrespect regarding the well-being of the experimental animal, including his wife and daughters. However, considering his precious contributions, Bernard had the first French funeral settled to a scientist. This happened after a declining health (1859-1978), with chronic painful enteritis, rheumatism, unrelenting migraines, and abrupt health deterioration after kidney infection.

Bernard’s Main Scientific Achievements in Neurophysiology

Bernard shed light on the role of the pancreas in digestion, and the liver in creating glucose, for instance. Additionally, he undertook research on neurophysiology by assisting Magendie on spinal nerves studies. His first communication (1843) was on “Recherches anatomiques et physiologiques sur la corde du tympan, pour servir a l’histoire de l’hémiplégie faciale.” This was the beginning of a long series of investigations on the relations of nerves to secretion, temperature and vasomotricity (Figure 2). One important landmark in his career was the discovery of the sympathetic nervous system control of heat regulation and blood flow, through vasodilator and vasoconstrictor functions, as initially identified by Brown-Séquard, and acknowledged by Bernard many years later (Figure 3). In 1851, he reported an increase in temperature in the corresponding side of the face (including the ears) as an effect of sectioning the cervical branch of the great sympathetic in rabbits, he attributed to “calorification” (an increase of temperature) due to a more active circulation. In 1852, Bernard reported that the galvanization of the peripheral extremity of the cut sympathetic nerve produced exactly opposite effects, reverting the temperature rise, accompanied by paleness of the ear. He also describe in detail the effects of such section-galvanization experiments on the pupil, eyelid, and ocular globe, the basis of a syndrome named after him. Moreover (1858), he showed that chorda tympani excitation dilates the vessels of the submandibular gland, while secretory activity enters.

In this way, he discovered that the sympathetic nerve was the constrictor of the blood vessels and the chorda tympani a dilator. Consequently, he established the concept of the physiological equilibrium of the two antagonistic innervations. Bernard (1858), in his lessons on the nervous system, traced the modern distinctions between neuronal and muscle paralysis causes through the use of curare, a topic of extreme interest to him since 1844. He was the first to reveal that curare blocked the nerve stimulation of muscles, but he suggested that the blocked muscle contractions was due to a direct action on the nerve. He did not distinguished a specific junction between nerve and muscle. However, his pupil Alfred Vulpian (1826-1887) suggested that curare acted on the motor endplate. These studies led Bernard to study asphyxia and anesthetics, besides, the receptor concept started with the curare studies (1856), providing the basis of the synapse and neuron theory. Bernard demonstrated also that simple reflex movements were due to the influence of sensory roots exerted on the motor roots. He discovered moreover the production of diabetes by puncture of the floor of the fourth ventricle (1849), interpreted by many as being the result of excessive stimulation of the liver by secretory nerves. Furthermore, he postulated that living organisms...
possessed sensors that regulate their internal environment, Le Milieu Intérieur (1857), later known as “homeostasis”. His concept of the central physiological control of the “milieu intérieur” was held in opposition to the old theory of “vitalism”. He considered that the regulation of vital functions was the leading function of the brain, and he lead to a pioneering comprehension of the nervous system complexity. With the publication of his masterwork L’Introduction à l’étude de la médecine expérimentale (1865) he laid the founding principles of clinical research and of scientific determinism which states that identical experiments should produce identical results.

Bernard was a distinguished researcher and experimental medicine philosopher, with several relevant contributions to neurology.
References

8. Cousin MT. Vulpian and not Claude Bernard first proposed the hypothesis of the motor end-plate as the site of action of curare. Anesthesiology 2002;97:527-528.