Association of optic atrophy and type 1 diabetes: clinical hallmarks for the diagnosis of Wolfram syndrome

José Luiz Pedroso1, Leandro Tavares Lucato2,3, Fernando Kok4, Juliana Sallum5, Orlando G. P. Barsottini1, Acary Souza Bulle Oliveira1

A 25-year-old woman presented with a 3-year history of progressive visual loss. She had type 1 diabetes mellitus (DM1) since 18-year-old. Fundoscopy showed atrophic optic discs (Figure 1). MRI disclosed bilateral optic nerve atrophy (Figure 2). Optic coherence tomography demonstrated disease progression (Figure 3). Exome sequencing disclosed two deleterious mutations in \textit{WFS} gene [the novel variant c.1228_1231delCTCT (p.Leu410Leufs*31) and the already reported mutation1 c.472 G>A (p.Glu158Lys)], confirming Wolfram syndrome (WFS). Full consent was obtained from the patient for the case publication.

WFS is a rare autosomal recessive disease characterized by DM1, optic atrophy, deafness, and diabetes insipidus2,3. The coexistence of DM1 and optic atrophy suggest WFS but molecular confirmation is mandatory4. Besides optic atrophy, MRI findings in WFS may include hyperintense signal in pons and in optic tracts, brainstem atrophy and absence of neurohypophyseal "bright signal"5.

Figure 1. Fundus image discloses marked bilateral atrophic optic discs with temporal pallor.

1Universidade Federal de São Paulo, Departamento de Neurologia, Sao Paulo SP, Brazil;
2Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neuroradiologia, Sao Paulo SP, Brazil;
3Centro de Diagnósticos Brasil, Sao Paulo SP, Brazil;
4Mendelics Análises Genômicas, Sao Paulo SP, Brazil;
5Universidade Federal de São Paulo, Departamento de Oftalmologia, Sao Paulo SP, Brazil.

Correspondence: José Luiz Pedro; Avenida Onze de Junho, 582 / ap. 131; 04041-002 São Paulo SP, Brasil; E-mail: jlpedroso.neuro@gmail.com

Conflict of interests: There is no conflict of interest to declare.

Received 20 November 2014; Received in final form 02 January 2015; Accepted 22 January 2015.
Figure 2. MRI of Wolfram patient (A, C, E) compared with an age-matched healthy subject (B, D, F). Coronal T2-weighted image using fat saturation (A) demonstrates striking hypoplasia of both optic nerves in the orbits (arrows); note the normal appearance in the healthy subject (B). The same sequence in the axial plane shows the same finding in the patient (C - arrows), compared to the normal aspect (D). Optic chiasm is also hypoplastic in Wolfram patient, demonstrated in a coronal post-contrast T1-weighted image (E - arrow), while a normal optic chiasm is appreciated in the healthy subject (F - arrow).

Figure 3. Optic coherence tomography measure around the disc showing thin retina, mainly thin nerve fiber layer performed at two dates (Nov 05th 2012 and May 21st 2014). Comparing both exams one can see progressive decrease on the retina thickness (Continua).
Figure 3. (Continuação) Optic coherence tomography measure around the disc showing thin retina, mainly thin nerve fiber layer performed at two dates (Nov 05th 2012 and May 21st 2014). Comparing both exams one can see progressive decrease on the retina thickness.

<table>
<thead>
<tr>
<th>Position(*)</th>
<th>0</th>
<th>45</th>
<th>90</th>
<th>135</th>
<th>180</th>
<th>225</th>
<th>270</th>
<th>315</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0</td>
<td>45</td>
<td>90</td>
<td>135</td>
<td>180</td>
<td>225</td>
<td>270</td>
<td>315</td>
<td>360</td>
</tr>
<tr>
<td>Follow-up #1</td>
<td>0</td>
<td>45</td>
<td>90</td>
<td>135</td>
<td>180</td>
<td>225</td>
<td>270</td>
<td>315</td>
<td>360</td>
</tr>
</tbody>
</table>

References