Intracranial isolated varix mimicking a meningioma: the relevance of modern MRI techniques for reliable diagnosis

Variz intracraniana isolada mimetizando um meningioma: a relevância de técnicas modernas de RM para um diagnóstico confiável

Diogo Goulart CORRÊA1,2, Luiz Celso HYGINO DA CRUZ JR.1

A 37-year-old man presented with headache. Brain vessel wall magnetic resonance imaging revealed a left temporal vascular ectasia with heterogeneous flow (Figure 1). Four-dimensional time-resolved magnetic resonance angiography (4DMRA) showed the lesion being progressively filled by contrast during the venous phase, with no arterial feeders (Figure 2 and Video).

Isolated intracranial varix is a focal dilatation of a vein, without neural tissue or other vessels anomalies1. Its main differential diagnoses are meningioma and arteriovenous fistula2. Vessel wall imaging and 4DMRA can appropriately show the internal flow, absence of arterial components and progressive filling, during the venous phase, confirming the diagnosis and avoiding unnecessary surgery.

A 37-year-old man presented with headache. Brain vessel wall magnetic resonance imaging revealed a left temporal vascular ectasia with heterogeneous flow (Figure 1). Four-dimensional time-resolved magnetic resonance angiography (4DMRA) showed the lesion being progressively filled by contrast during the venous phase, with no arterial feeders (Figure 2 and Video).

Isolated intracranial varix is a focal dilatation of a vein, without neural tissue or other vessels anomalies1. Its main differential diagnoses are meningioma and arteriovenous fistula2. Vessel wall imaging and 4DMRA can appropriately show the internal flow, absence of arterial components and progressive filling, during the venous phase, confirming the diagnosis and avoiding unnecessary surgery.

Figure 1. Isolated intracranial varix. Ectasia of a left temporal cortical venous vessel, well identified in the axial 3-D T1 darkblood image, for intracranial vessel wall MRI, pre- (A) and postintravenous contrast injection (B), with heterogeneous filling by the contrast agent. Note the flow-void inside the lesion and its well-demarcated and smooth contours, marking the vascular nature of the lesion.
Figure 2. Isolated intracranial varix. 4D time-resolved MR angiography showed no arterial abnormalities (A) and progressive filling of the intracranial varix during the venous phase (B, C and D), with no arterial feeders or signs of arteriovenous malformation.

References
