EFFECT OF CONVENTIONAL AND COX-2 SELECTIVE NON-STEROIDAL ANTIINFLAMMATORY DRUGS ON BONE HEALING

TERESA LÚCIA LAMANO-CARVALHO

SUMMARY

In the present literature review, experimental and clinical studies of the last 15 years concerning the effects of conventional and COX-2 selective non-steroidal anti-inflammatory drugs (NSAIDs) on bone healing were reported. Most of the data pertaining to conventional NSAIDs have shown to cause delayed fracture healing and impairment of spinal fusion in animal studies, as well as a negative interference on spinal fusion rate in human beings. In spite of the established importance of prostaglandin E2, synthesized by osteoblasts under COX-2 stimulation, in controlling bone formation, the results regarding the potential inhibitory effects of selective NSAIDs on experimental bone healing are still controversial and there is no clinical data to confirm that they interfere negatively with repairing bone formation.

Keywords: Prostaglandins; COX-2; Non-steroidal anti-inflammatory drugs; Bone healing

INTRODUCTION

Among the several roles played by prostaglandins, the local control of bone metabolism can be described. Therefore, it is expected that the long-term use of non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit prostaglandins synthesis, interferes on a normal bone’s structure and function, as well as on the development of some bone pathologies. In this literature review, experimental and clinical studies conducted in the last 15 years addressing the effects of conventional and cyclooxygenase-2 enzyme (COX-2) selective NSAIDs on reparative bone formation are listed. As a supplementary explanation, data on the different COX isoforms involved on prostaglandins formation and on the role of prostaglandins on the control of normal bone metabolism have been provided. All the studies listed on references section resulted from a search on PubMed (US National Library of Medicine).

Prostaglandins, cyclooxygenase enzymes and NSAIDs

Eicosanoids are formed as a response to various stimuli that are able to activate phospholipase A2 enzyme, which hydrolyzes phospholipids of cell membranes releasing arachidonic acid into the cytoplasm, which will, in turn, serve as a byproduct to two different enzymatic paths, the COX path – ultimately leading to thromboxanes and prostaglandins formation, and the lipoxygenase path – leading to the formation of leukotrienes and other compounds. The so-called constitutive prostaglandins are usually expressed in a variety of tissues and organs, with well-known physiological activities: digestive mucosa protection, renal blood flow control and homeostasis, among others. U]The so-called inductive prostaglandins synthesis. More recently, however, the existence of such a precise division of activities of both isoforms has been proven, meaning that the COX-1 enzyme seems to play a significant role on inflammation as well, especially on hyperalgesia, and the COX-2 enzyme is constitutively expressed in many organs, being an important mediator of renal, reproductive and nervous functions, also contributing to the protection of digestive mucosa cells and to homeostasis control. Among the several roles played by prostaglandins, the local control of bone metabolism can be described. Therefore, it is expected that the long-term use of non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit prostaglandins synthesis, interferes on a normal bone’s structure and function, as well as on the development of some bone pathologies. In this literature review, experimental and clinical studies conducted in the last 15 years addressing the effects of conventional and cyclooxygenase-2 enzyme (COX-2) selective NSAIDs on reparative bone formation are listed. As a supplementary explanation, data on the different COX isoforms involved on prostaglandins formation and on the role of prostaglandins on the control of normal bone metabolism have been provided. All the studies listed on references section resulted from a search on PubMed (US National Library of Medicine).

Prostaglandins, cyclooxygenase enzymes and NSAIDs

Eicosanoids are formed as a response to various stimuli that are able to activate phospholipase A2 enzyme, which hydrolyzes phospholipids of cell membranes releasing arachidonic acid into the cytoplasm, which will, in turn, serve as a byproduct to two different enzymatic paths, the COX path – ultimately leading to thromboxanes and prostaglandins formation, and the lipoxygenase path – leading to the formation of leukotrienes and other compounds. The so-called constitutive prostaglandins are usually expressed in a variety of tissues and organs, with well-known physiological activities: digestive mucosa protection, renal blood flow control and homeostasis, among others. U]The so-called inductive prostaglandins synthesis. More recently, however, the existence of such a precise division of activities of both isoforms has been proven, meaning that the COX-1 enzyme seems to play a significant role on inflammation as well, especially on hyperalgesia, and the COX-2 enzyme is constitutively expressed in many organs, being an important mediator of renal, reproductive and nervous functions, also contributing to the protection of digestive mucosa cells and to homeostasis control. Among the several roles played by prostaglandins, the local control of bone metabolism can be described. Therefore, it is expected that the long-term use of non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit prostaglandins synthesis, interferes on a normal bone’s structure and function, as well as on the development of some bone pathologies. In this literature review, experimental and clinical studies conducted in the last 15 years addressing the effects of conventional and cyclooxygenase-2 enzyme (COX-2) selective NSAIDs on reparative bone formation are listed. As a supplementary explanation, data on the different COX isoforms involved on prostaglandins formation and on the role of prostaglandins on the control of normal bone metabolism have been provided. All the studies listed on references section resulted from a search on PubMed (US National Library of Medicine).

Prostaglandins, cyclooxygenase enzymes and NSAIDs

Eicosanoids are formed as a response to various stimuli that are able to activate phospholipase A2 enzyme, which hydrolyzes phospholipids of cell membranes releasing arachidonic acid into the cytoplasm, which will, in turn, serve as a byproduct to two different enzymatic paths, the COX path – ultimately leading to thromboxanes and prostaglandins formation, and the lipoxygenase path – leading to the formation of leukotrienes and other compounds. The so-called constitutive prostaglandins are usually expressed in a variety of tissues and organs, with well-known physiological activities: digestive mucosa protection, renal blood flow control and homeostasis, among others. U]The so-called inductive prostaglandins synthesis. More recently, however, the existence of such a precise division of activities of both isoforms has been proven, meaning that the COX-1 enzyme seems to play a significant role on inflammation as well, especially on hyperalgesia, and the COX-2 enzyme is constitutively expressed in many organs, being an important mediator of renal, reproductive and nervous functions, also contributing to the protection of digestive mucosa cells and to homeostasis control. Among the several roles played by prostaglandins, the local control of bone metabolism can be described. Therefore, it is expected that the long-term use of non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit prostaglandins synthesis, interferes on a normal bone’s structure and function, as well as on the development of some bone pathologies. In this literature review, experimental and clinical studies conducted in the last 15 years addressing the effects of conventional and cyclooxygenase-2 enzyme (COX-2) selective NSAIDs on reparative bone formation are listed. As a supplementary explanation, data on the different COX isoforms involved on prostaglandins formation and on the role of prostaglandins on the control of normal bone metabolism have been provided. All the studies listed on references section resulted from a search on PubMed (US National Library of Medicine).
morbidity associated to the long-term use of anti-inflammatory agents. More recently, the long-term use of selective cox-2 inhibitors have been emerging also as a preventive and therapeutic alternative for some non-inflammatory diseases that result in increased COX-2 expression, as seen in some kinds of cancer, notably those of epithelial source, and in Alzheimer’s disease(2). Nevertheless, the long-term use of some of these selective NSAIDs has been shown to be deleterious to renal function and homeostasis, offering an increased risk of thrombosis and infarction(3). Therefore, rofecoxib (Vioxx®) was recalled in September 2004 and valdecoxib (Bextra®, Pfizer) remains available in market, but with a black-strip package, as well as a second-generation coxibs such as etoricoxib (Arcoxia®, Merck) and parecoxib (Dynastal®, Pfizer – a veldecoxib pro-drug), marketed in the United States and in 45 other countries, and lumaricoxib (Prexige®, Novartis), approved for use in the United Kingdom(3).

Prostaglandins and Bone Tissue
Bone modeling, remodeling and repair are controlled by hormones and local factors that must act in accurate strengths, simultaneously or sequentially, establishing synergetic or antagonistic interactions in order to assure a full and appropriate cell function, accountable for matrix formation and absorption in a speed and duration required for a normal bone tissue. The skull is an abundant source of prostaglandins, which are important local regulators of bone metabolism, sometimes with stimulatory effects, sometimes inhibitive, playing critical roles both for its physiology and for some pathological changes.

Prostaglandins, especially PGE, are produced by osteoblasts under a permanent COX-2 stimulus, of which expression is regulated by hormones, cytokines and growth factors that control bone remodeling. A major physiological function of prostaglandins on bone tissue is to mediate its increased formation as a response to mechanical stimuli, both in animals and human beings. Exogenous PGE is known to strongly increase bone formation in experimental animals, and this anabolic effect can be mimicked by applying mechanical stimuli on bone surface, a condition also stimulating PGE production in human beings. Furthermore, in several experimental models, NSAIDs have been proven to delay bone injuries and fractures repair, which evidences the role of prostaglandins on reparative bone formation(3, 4, 5).

In some circumstances, notably those of pathological nature, prostaglandins (especially PGE,) can stimulate bone absorption increasing the amount and functional activity of osteoclasts. Many bone absorption factors are known to stimulate prostaglandins production by inducing COX-2 enzyme. In situations like those, gene blockage to COX-2 results in delayed heterotopic ossification(6). The potential deleterious effects of these drugs on bone repair, however, has been targeted in several investigations, with results still controversial.

Conventional NSAIDs: experimental and clinical studies
Indomethacin has been used as a standard for non-selective NSAID and as a positive control in studies testing the activity of new drugs in this class. The majority of the studies show that its long-term use delays long bones repair process and spinal fusion in experimental animals(6, 10, 11, 12, 13). An exception to this is a recent study(14) where neither indomethacin nor other selective and non-selective NSAIDs (ibuprofen, ketorolac, rofecoxib and celecoxib) significantly interfered on tibial repair of mice. The authors discuss that the selection of the dosages of the different NSAIDs was based on literature and pharmacological data, targeting doses corresponding to the ones used for clinical treatment in human beings, and justify their negative results for having used young animals, while literature points out to a delayed repair in more mature and bic(3). It is worthy to highlights, however, that in that experiment, drugs were incorporated to meals, and no data was available regarding individual intake rates during the experimental period. The other conventional NSAIDs (diclofenac, ibuprofen, naproxen, ketorolac) have been shown to be able to affect reparative bone neoformation, inhibiting long-bones fracture repair and spinal fusion in most of the experimental studies(6, 10, 11, 12, 18).

Regarding clinical studies, yet many of these are retrospective and other uncontrolled factors may be interfering on repair process(16). Literature suggests, with rare exceptions(18), that conventional NSAIDs can negatively interfere on spinal fusion rate(20, 21, 22, 23, 24), additionally to be effective in preventing heterotopic ossification(16). Nevertheless, three letters to the editor published on the British Medical Journal in late 1990’s illustrate the controversy around this topic. Varghese and cols.(26) stressed that, although pre-clinical studies show deleterious effects of NSAIDs on fractures repair and spinal fusion, those drugs are still widely employed in clinical orthopaedics for postoperative pain relief. The authors mention the high rate of patients submitted to hip prosthesis placement and using NSAIDs for long periods, and recommend that, should these drugs must be used, this should be done at the lowest possible dosage and for the shortest possible time. As a response, Stone and Richards(27) admit that many, but not all animal studies showed deleterious effects of NSAIDs on bone repair, and report that they are aware of only two studies with human beings, one of these corroborating and the other denying NSAIDs adverse effects on bone repair. The authors warned about the need to control postoperative pain and recommended that, in the absence of conclusive clinical experiments, the use of NSAIDs should not be suspended, although care should be taken in cases of proven risk of non-union. Subsequently, Godden(28) strongly contradicted the suggestion by Stone and Richards(27) that further clinical studies are required on this topic, stating that journals focusing maxillofacial surgery have published a number of studies addressing the use of NSAIDs for pain relief associated to third molar extraction and that, although not making reference to studies specifically addressing bone repair, the authors would be obliged to report any adverse effects, with no reported cases of delayed repair. The author, in a reference to the letter of Varghese and cols.(26), said that the results achieved on rodents should

NSAIDs and Bone Repair
Apparently, the use of NSAIDs, yet for long periods, is rarely associated to adverse effects on normal bone metabolism. Furthermore, clinical observations suggest the therapeutic use of NSAIDs for preventing bone loss and treating osteoporosis in elderly women(11, 12). Additionally, beneficial effects of NSAIDs have been evidenced, halting heterotopic ossification(7, 8). The potential deleterious effects of these drugs on bone repair, however, has been targeted in several investigations, with results still controversial.
Selective COX-2 NSAIDs: experimental and clinical studies

The number of experimental results concerning the effects of selective COX-2 NSAIDs on bone repair is quite smaller, recent (from 2002 on) and also controversial. In addition to the evidences showing that rofecoxib, celecoxib and parecoxib inhibit long bones repair in rats and rabbits,[12, 17, 18, 20] there are some reports stating that rofecoxib and celecoxib do not interfere on long bones' fracture repair and on spinal fusion rates in these species.[11, 13, 14] Analyzing experimental details, it is not possible to explain these controversies by differences between dosages, forms and time of administration of drugs, by differences between animal species, kind of bone and method of reparative bone tissue assessment. Some authors suggest that the key factors interfering on results achieved with selective NSAIDs are dose and treatment period,[14] as well as intra- and inter-species differences regarding sensitivity to drugs, potential local and systemic co-variatory factors, interference of parameters such as age, bone remodeling pace, and associated diseases, and also these drugs’ pharmacokinetics in rodents versus human beings[1].

Criticisms to experimental models showing the deleterious effects of selective COX-2 NSAIDs on bone repair is quite smaller, and there is no evidence that they interfere on reparative bone neoformation in human beings[12, 15, 20]. Despite being rare, as far as we could check, there is no evidence proving that these drugs interfere on reparative bone neoformation in human beings[20, 31].

CONCLUSION

The majority of studies described in literature show that conventional NSAIDs can delay long-bones fracture repair and spinal fusion in experimental animals, and negatively interfere on spinal fusion rate in human beings. Despite of the proven importance of prostaglandin E2 synthesized by osteoblasts under COX-2 stimulation for bone repair, experimental results concerning the potential inhibitory effects of selective NSAIDs on bone repair are both rare and still controversial, and there is no evidence that they interfere on reparative bone neoformation in human beings.

REFERENCES

27. Golden D. Effects of NSAIDs on bone healing have been widely reported in maxillofacial journals. British Med J 1999; 318(7191):1141.