Micobacterias no tuberculosas en cirugías: desafío passible de enfrentamiento en el Brasil?

Danielle Bezerra Cabral¹, Denise de Andrade²

RESUMEN
Las infecciones por micobacteria no tuberculosa (MNT) representan una emergencia epidemiológica y sanitaria, especialmente, en pacientes sometidos a procedimientos invasivos. Frente a lo expuesto, se tuvo como objetivo analizar las evidencias científicas, en la literatura científica, sobre la ocurrencia en el Brasil de infecciones por MNT en pacientes quirúrgicos. Se utilizó como método de investigación la revisión integrativa de la literatura en las bases de datos Lilacs, Medline/Pubmed, ISI Web of Science y Biblioteca Cochrane. Se seleccionaron 15 publicaciones sobre la temática en los últimos 30 años que estaban orientadas a las medidas de prevención y control con foco en la vigilancia post alta, en el uso de antibioticoterapia y glutaraldehído. Cirugías oftalmológicas, estéticas, cardiacas y procedimientos laparoscópicos y arroscópicos fueron las más investigadas. La situación nacional de las MNTs es preocupante, aun más cuando se reconoce la posibilidad de subnotificación.

Descritores: Micobacterias atípicas; Procedimientos quirúrgicos operativos; Infecciones atípicas por Mycobacterium

¹ Graduate student (PhD) in Nursing from the School of Nursing of Ribeirão Preto, Universidade de São Paulo – USP, Ribeirão Preto (SP), Brazil.
² Associate Professor, Department of General and Specialized Nursing School of Nursing of Ribeirão Preto, Universidade de São Paulo – USP, Ribeirão Preto (SP), Brazil.
INTRODUCTION

Nontuberculous mycobacteria (NTM) are ubiquitous, grow in less than one hour and form visible colonies after two to five days; they are isolated in natural water and supply systems, soil, protozoa, animals and in humans. Various species have been identified and for a long time these microorganisms were called environmental mycobacteria and then “atypical” mycobacteria or NTM or fast-growing bacteria. NTM infections are more frequent on the skin and subcutaneous tissue and in general are associated with cosmetic surgical procedures such as liposuction or liposculpture, injectable solutions such as procaine, L-carnitine, C vitamin, and lidocaine and after injection of silicone in mammary prosthesis; acupuncture treatment; placement of nipple piercing and skin infections after tattooing.

There are few cases of NTM infections published in Brazil, such as studies addressing keratitis due to M. Chelonae after surgery to correct myopia, skin infections due to M. abscessus and M. fortuitum after applications in mesotherapy or cosmetic surgery and studies addressing the increasing risk of infections caused by these species of mycobacteria in patients undergoing invasive medical procedures. Hence, there seems to be an underreported distribution concerning the occurrence of NTM associated with surgeries in Brazil. It is worth noting that surgical infections result in an average of 12 additional days of hospitalization and increased costs and are considered a high priority according to the Joint Commission’s infections control standards.

The prevention and control of NTM infections with the application of safe surgery protocols in Brazilian hospitals can reduce complications, which are in most instances preventable.

This study analyzes scientific evidence concerning the occurrence of NMT infectious related to surgical procedures in Brazil and establishes an overview of the Brazilian situation based on clinical data.

METHODS

This integrative literature review is intended to contribute to theoretical development and the incorporation of evidence-based clinical practice. This is a method of choice by the researcher of the studied issue so new or emergent topics are addressed and provide readers a synthesis of this knowledge in a conceptual manner, offering a new perspective on the topic.

The selection of papers was based on the following question: “What has been published in Brazil concerning the occurrence of nontuberculous mycobacteria related to surgical procedures in adult individuals without immunological impairment?”

Controlled and non-controlled descriptors were used in the search for papers, conducted in the Medline/PubMed (biomedical and health sciences digital files at the National Library of Medicine’s) ISI Web of Science (digital files of medical, social sciences, art and humanities of the Institute for Scientific Information – ISI Web of knowledge) and Lilacs (Latin American and Caribbean Health Sciences). The controlled descriptors obtained in the Health Sciences Descriptors (DeCS) were: Mycobacterium; Mycobacteria, Atypical; Corneal Surgery, Laser; Surgery, Plastic; Mycobacterium Infections, Atypical; Video-Assisted Surgery; Surgery Wound Infection; and Surgical Procedures, Operative. Non-controlled descriptors included: cosmetic surgical procedures; nontuberculous mycobacteria and fast-growing bacteria.

The inclusion criteria for the papers to be selected for this integrative review were full-text papers reporting the Brazilian context concerning NTM infectious in surgical procedures of adult patients. Papers written in English, Portuguese and Spanish were searched from 1980 to 2010, regardless of the study design.

Papers addressing animals or individuals with Acquired Immunodeficiency Syndrome (AIDS) undergoing treatment with antiretroviral agents—Highly Active Antiretroviral Therapy—as well as studies involving clinical samples of pulmonary secretion and endoscopic procedures for diagnosis were excluded. In the analysis of studies included in this review we used: levels of evidence (I – Systematic Reviews or meta analysis of randomized and controlled Clinical Trials (RCT); II – randomized and controlled Clinical Trials (RCT); III – non-randomized CT; IV – control-case or cohort studies; V – systematic reviews of qualitative studies; VI – single descriptive study; VII – expert report) and quality of information proposed by researchers in the field.

RESULTS

Fifteen studies addressing the occurrence of NTM infections in surgical procedures in Brazil were selected. Six (40%) out of these were retrieved from the Medline/PubMed, seven (46.7%) from Lilacs and two (13.3%) from ISI Web of Science. Seven (52.9%) papers were published in Portuguese and eight (47.1%) in English. Considering the proportion of papers published per year, we observed a decrease between 1990 and 2000 and an incremental increase from 2000 to 2010 (Figure 1).

We believe that the increased number of studies between 2000 and 2010 is related to the outbreak of NTM infections. Over recent years the National Health Surveillance Agency (ANVISA) has monitored the...
occurrence of post surgical NTM infections in different regions of Brazil.

In relation to the level of evidence, ten studies present weak evidence (VI and VII) with the following study’s designs: case report, cross-sectional studies and literature review and five with moderate evidence (III and IV) with quasi-experimental design, retrospective cohort, methodological and longitudinal prospective studies. Hence, the presentation of data categorized the studies according to the authors’ objective. The scientific production was categorized into: types of surgeries and prevention and control of mycobacteria infection followed by the subcategories: post discharge surveillance, antibiotic therapy and use of glutaraldehyde (GA). The most frequent surgeries were: cardiac surgeries (placement of porcine bio prostheses), laser in-situ keratomileusis (LASIK) to correct myopia, astigmatism and breast augmentation.

Table 1 – Scientific studies addressing surgical infections caused by Nontuberculous mycobacteria according to the authors, objective, study’s design, description of results and levels of evidence.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Objective</th>
<th>Design</th>
<th>Description of results</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fontana, RT(9)</td>
<td>To evaluate hospital-acquired infections caused by NTM in the literature.</td>
<td>Literature review</td>
<td>Identifying strains is important to establish an early diagnosis and appropriate therapy. The contamination of products and medical devices poses a “real” risk.</td>
<td>VII</td>
</tr>
<tr>
<td>Padovese MC, Fontaleza CM, Freire MP, Bandão de Assis D, Madalosso G, Pelli ni AC et al.(7)</td>
<td>To describe outbreak caused by NTM after breast implant surgeries.</td>
<td>Retrospective cohort</td>
<td>402 medical files were reviewed and 14 cases were confirmed; 12 out of the 14 cases were isolated and the following were found: M. fortuitum, M. abscessus and M. porcinum. The sale and reprocessing of sizers did not meet the ANVISA’s requirements and were withdrawn.</td>
<td>IV</td>
</tr>
<tr>
<td>Alveranga L, Freitas D, Höfling-Lima Al, Belford R Jr, Sampaio J, Sousa L et al.(9)</td>
<td>To describe three cases of post-LASIK infectious keratitis caused by NTM.</td>
<td>Cases series</td>
<td>Series of cases of corneal infiltrates similar to the crystalline keratopathy after LASIK surgery. Cultures specimens were subsequently subjected to REA, which identified M. chelonei.</td>
<td>VI</td>
</tr>
<tr>
<td>Longa NSO, Duarte RS and Pitombo MB(21)</td>
<td>To investigate the susceptibility of M. massiliense strains isolated for disinfection after 30 minutes, 1 hour, 6 hours and 10 hours of exposure to commercial disinfectants.</td>
<td>Quasi-experiment</td>
<td>Standard strains did not show growth after 30 minutes in 2% GA. M. massiliense strains were recovered after the time indicated for disinfection (30 minutes and 60 minutes) and sterilization (6 hours and 10 hours) indicating high tolerance to 2% GA.</td>
<td>IV</td>
</tr>
<tr>
<td>Jorge SC, Gondim FAA, Arnoni AS, Zamarano MM, Garcia DO and Souza JEMR(11)</td>
<td>To describe a case of infective endocarditis in a biological valve prosthesis with negative blood cultures.</td>
<td>Case report</td>
<td>40-year-old man with clinical hypothesis of infective endocarditis underwent aortic valve replacement. Negative blood cultures were performed and prosthesis revealed M. chelonae.</td>
<td>VI</td>
</tr>
<tr>
<td>Casagrande ISJ, Lucciola J and Salles CA(8)</td>
<td>To analyze the etiopathogenesis of contamination of porcine bio prostheses by atypical mycobacteria.</td>
<td>Quasi-experiment</td>
<td>The microbiological analysis of 400 cultures of aortic porcine valves submitted to tanning in glutaraldehyde identified colonies of M. chelonae. This mycobacterium was resistant to the action of 0.625% GA.</td>
<td>IV</td>
</tr>
<tr>
<td>Höfling-Lima Al, de Freitas D, Sampaio JL, Leão SC and Contamni P(10)</td>
<td>To evaluate the in vitro susceptibility of M. chelonae and M. abscessus to antimicrobial agents based on keratitis isolates recovered after refractive surgery (LASIK)</td>
<td>Quasi-experiment</td>
<td>Isolates of M. chelonae (3) and M. abscessus (3) were tested and one among nine isolated from an outbreak in SP was sensitive to all fluoroquinolones; the remained were resistant.</td>
<td>IV</td>
</tr>
</tbody>
</table>

Figure 1- Scientific production according to the decade of publication. Brazil, 1980-2010.
... continuation

<table>
<thead>
<tr>
<th>Authors</th>
<th>Objective</th>
<th>Design</th>
<th>Description of results</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furtado D, Alvarenga L, Sampaio J, Maninis M, Sato E, Sousa L et al.</td>
<td>To describe 11 cases of keratitis by M. chelonae after LASIK, with microbiological and clinical investigation.</td>
<td>Cases series</td>
<td>In 2000, ten patients developed infection after LASIK. Nine eyes submitted to corneal scraping showed M. chelonae. Samples from the air conditioning system and water from the portable vaporizer used to clean the microkeratome tested positive to M. chelonae.</td>
<td>VI</td>
</tr>
<tr>
<td>Guimarães FA, Alvarenga L, Barbosa L, Sampaio J, Leão SC, Höfling-Lima AL et al.</td>
<td>To describe the presence of mycobacteria in patients with deep stromal keratitis, six months after intensive treatment.</td>
<td>Case report</td>
<td>41-year-old man had blurred vision, eye pain and redness due to a trauma caused by a metallic foreign body. Corneal scrapings were obtained and culture revealed M. abscessus.</td>
<td>VI</td>
</tr>
<tr>
<td>Chiquin CA, Silva JH, Caires MJ, Lemes MC, Pentado-Filho SR and Tsuno FI</td>
<td>To establish the occurrence of NTM infection post laparoscopic arthroscopy.</td>
<td>Cross-sectional</td>
<td>Response to the questionnaire of infection control applied to post-surgical patients was 77% (468 out of 609 phone calls). Only 11 answers suggested infectious TNM though no case of infection was reported.</td>
<td>VI</td>
</tr>
<tr>
<td>da Silva Telles MA, Chima MR, Fernandé L and Riley IS</td>
<td>To characterize the profiles of susceptibility of clinical isolates of M. kansasii through the CIM method.</td>
<td>Cross-sectional</td>
<td>A total of 106 isolates of 26 patients infected with samples of genotype I of M. kansasii were collected from 1993 to 1998. Most isolates were susceptible to CLR (99% of strains), AMK (97%) and ETH (95%) and resistant to DOX (99%) and EMB (14%).</td>
<td>VI</td>
</tr>
<tr>
<td>Severo LC, Gomes A and Straliotto S</td>
<td>To describe a case of atypical mycobacteriosis by M. chelonae sspp. A. abscessus, which simulated spontaneous abscessus.</td>
<td>Literature review</td>
<td>63-year-old man reported trauma with metallic object on the back of hand. Erythematous nodules emerged and skin biopsy identified M. chelonae sspp. abscessus.</td>
<td>VII</td>
</tr>
<tr>
<td>Pitombo MB, Lopes O and Duarte RS</td>
<td>To analyze the main factors for infections caused by M. massiliense related to the clone BRA100 resistant to GA 2%, and water from the portable vaporizer used to clean the microkeratome tested positive to M. chelonae.</td>
<td>Cross-sectional</td>
<td>Growth was not observed in any of the samples in the group 1 after analysis of cultures. The growth of microorganisms was observed in all the samples in the group 2. No growth was observed after 30 minutes in 2% GA.</td>
<td>III</td>
</tr>
</tbody>
</table>

DISCUSSION

Mycobacterial infections related to cardiac surgeries have been reported since the mid 1970s in the United States and Hungary. Post-surgical infective endocarditis is among these infections, which should be included in the etiological diagnosis of prosthetic infections, which implies removing the infected prosthesis. It is important to stress the importance of cultures and the histopathological exams of prostheses when replaced in cases of suspected endocarditis because it may be the only evidence of the diagnosis of patients with an “apparently negative” blood culture.

The risk of NTM infection in reconstructive breast surgery has a worldwide incidence of 4.8% to 17.8% but there are no data concerning its occurrence in Brazil. The complications of this surgery are significant causes of morbidity, many of which are related to the healing of wounds and viability of the breast implant. The onset of clinical signs range from three weeks to three months, though there are reports of up to two years after surgery. Symptomatology includes edema, sensitivity and erythema. In the therapeutic context, the initial treatment of any infection after breast implants is empirical antibiotic therapy and if symptoms and periprosthetic infection do not
improve, removal of the prosthesis with debridement is recommended[8]. Reports of NTM infections related to ophthalmological surgeries mainly indicated laser surgeries to correct myopia[8]. Hence, clinical characteristics of NTM infections are key for suspecting infection post LASIK. NTM keratitis is characterized by its indolent course and low antimicrobial response, progressing to a severe necrosis due to the inflammatory process[9,19-20]. Patients report pain, photophobia, decreased vision and redness, and alternatively they may complain of foreign body sensation or just a mild irritation[9].

The incidence and etiology of infectious keratitis related to LASIK in Brazil is unknown[20]. However, mycobacterial infections have been frequently associated with keratitis post LASIK due to failure in antimicrobial therapy, especially monotherapy[20]. Nevertheless some authors recommend performing cultures of corneal infiltrates to confirm the diagnosis and determine sensitivity to antibiotics to implement appropriate therapeutic measures[9,20].

Considering that the risk for infection represents an important threat to the safety of patients and professionals delivering care, prevention and control actions should be implemented in the entire organizational structure. There is a need for integrated and responsive programs in a multidisciplinary scope. A difficulty identified in post-discharge surveillance is the monitoring and early identification of infected and colonized cases in postsurgical procedures[22]. Hence, various post-discharge surveillance methods concerning Healthcare-Associated Infections (HAI) are recommended, however choosing the best method is difficult and each institution should use the one compatible with its resources, structure and clientele profile[22,30].

The NTM infection diagnosis may be difficult, nevertheless the greatest problem faced by health professionals is its treatment[31]. An important characteristic of these mycobacteria is resistance to medications used in the treatment of tuberculosis[1]. It is worth noting that the clone BRA100 of M. massiliense, predominant in Brazil, is sensitive in vitro to amicacina, claritromicina and tigecycline but resistant to doxycycline and ciprofloxacin, and has intermediate sensitivity to cefoxitin and imipenem[9]. In this context, empirical antibiotic therapy should be implemented for at least six months and include, whenever possible, a surgical approach to remove infected tissue or any other foreign body to ensure the success of therapy[4,8].

Given the previous discussion, the identification of species is important for implementing appropriate therapy, because isolated strains of clinical cases present differences in patterns of sensitivity to antimicrobial agents[1,23]. We also highlight the possibility of harmonic association among different microorganisms. Therefore, identifying the epidemiological and pathogenetic chain of NTM is required to adopt preventive measures of symptomatology associated with other microbial species such as fungi[20]. National alert reports the specific features of the Brazilian profile of the strain sensitivity, given guidelines of the Committees of Hospital-Acquired Infections Control and the patients’ individual conditions[25].

Mycobacterial infections are strongly associated with failure in reprocessing surgical devices. In most of the health services investigated by the Brazilian health agency, these devices were submitted only to the disinfection process and not to sterilization[20]. Studies included in the subcategory—use of glutaraldehyde (GA)—, showed that clinical strains of post-laparoscopy lesions, previously classified as M. massiliense, were resistant to 2% GA both in the disinfection and sterilization processes[13,23-27].

CONCLUSION

This review shows that the most important aspect in the conduct of mycobacteria is prevention. Obviously in a country with continental proportions such as Brazil, a diversity of situations and conduct is inevitable. Consequently, effective surveillance strategies, control, supervision, and educational interventions were idealized in theory but are fragmented in the practical context of health care. Various post-discharge surveillance methods concerning HAI were recommended but choosing the ideal method is difficult and each institution should develop and use the one compatible with its resources, structure and profile of its clientele. In this context, the real occurrence of NTM in surgeries in Brazil remains obscure, especially if we consider that some diagnosis and control strategies have been already implemented.

REFERENCES