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ABSTRACT. Spatial data (e.g., phytopathogenic data) do not always meet assumptions such as 

stationarity, isotropy and Gaussian distribution, thereby requiring complex spatial methods and models. 

Some deterministic assumption-free methods such as the inverse distance weighting can also be applied 

to predict spatial data, but their output is limited for graphical solutions (mapping). We adapted a 

computer-based prediction method called Circular Variable Radius Moving Window (CVRMW) that is 

based on two others: moving window kriging (MWK) and inverse squared-distance weighting (ISDW). The 

algorithm is developed to meet an objective function that minimizes the index of variation of the spatial 

observations inside the moving window. A code in R language is presented and thoroughly described. The 

outputs include the range of the spatial dependence as the radius calculated at every target location and 

the standard error of the predicted values, mapped to provide a useful tool for spatial exploratory analysis. 

The method does not make any assumptions about the spatial process, and it is an alternative for dealing 

with spatial heterogeneity.  
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Introduction 

The knowledge about the within-field patterns of the spatial distributions of crop diseases, pests and 

their natural enemies is critical to planning control tactics, developing efficient sampling plans and 

predicting damage (Martins et al., 2018). The spatial distributions of many species of plant pathogens still 

remain understudied. Moreover, the spatial variation of the soil properties within fields offers various 

conditions for the diverse development of crops and many soil-borne pests (Patzold et al., 2008; Hbirkou et al., 

2011). For instance, heterogeneous variables such as the occurrence of cyst nematodes require additional 

samples at shorter distances to ensure that the spatial variation is adequately addressed (Hbirkou et al., 2011). 

According to Freitas et al. (2017), soil chemical variables can also affect the spatial distribution of nematodes. 

Studies of the spatial distributions of agricultural pests have been carried out using aggregation 

indices (Holguin, Mueller, Khalilian, & Agudelo, 2015) such as the Morisita index, the variance/average 

ratio, Taylor’s Power law (Taylor et al., 2017) and others. However, these statistics are nonspatial, that 

is, they do not consider the spatial dependence of the data. Geostatistical methods based on variogram 

analyses have also been widely recommended and applied (Pimentel, Lopes, Mexia, & Mumford, 2017; 

Pulakkatu-Thodi, Reisig, Greene, Reay-Jones, & Toews, 2014; Rijal, Brewster, & Bergh, 2014; Masetti, 

Butturini, Lanzoni, De luigi, & Burgio, 2015; Martins et al., 2017; Yawson et al., 2017; Freitas et al., 

2017) and should be preferred. In these methods, a common assumption is stationarity of first and/or 

second degree, when the mean and variance are constant over the area. Of course, each of the 

parameters may be independently stationary (Terrien, Germain, Marque, & Karlsson, 2013; Ching & 

Lin, 2014). Nonetheless, this assumption is rather an exception since the values of a spatial process 

over the landscape are conditioned by different factors, which causes them to lose their intrinsic nature 

(Siqueira et al., 2015). 

Some spatial data such as the population density of phytopathogenic nematodes in a field have a local 

character. In this case of nonstationarity, a heterogeneous variogram can be obtained using a moving 

window centered on the location to be predicted, which is an approach known as Moving Window Kriging 

(MWK), as described by Hass (1990). Applications of MWK in soil data were carried out by Walter, 
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McBratney, Douaoui, and Minasny (2001) and Cattle, McBratney, and Minasny (2002). A local variogram is 

determined at every target location, in contrast with the conventional forms of kriging where there is only 

one global variogram (isotropy) produced for the entire dataset (Demšar & Harris, 2011). 

The spatial and temporal heterogeneity of crops can also make it difficult to map pest or weed infestations. 

According to Baillod, Tscharntke, Clough, and Batáry (2017), the spatial heterogeneity of crops can be described 

both by their composition (e.g., crop diversity) and spatial arrangement (e.g., average field size). Temporal crop 

heterogeneity describes the changes in crop patterns due to the annual succession of crops. For instance, 

Bertrand, Burel, and Baudry (2016) found that some beetle species with high dispersal power such as Trechus 

quadristriatus were more abundant in landscapes with high spatial heterogeneity, whereas the abundance of less 

mobile species such as Poecilus cupreus was only positively influenced by the temporal crop dynamics. 

Infestation maps obtained by kriging are often based on semivariance models for continuous variables that 

follow a known distribution. Ordinary kriging implicitly assumes a Gaussian-like distribution. It is not rare to find 

works which data are firstly transformed to approximate normality or to remove variance trends. According to 

Yamamoto and Landin (2013), a semivariogram is quite sensitive to the statistical distribution. Models that 

incorporate information from discrete variables (Diggle, Tawn, & Moyeed, 1998) are complex and have little 

appeal. On the other hand, simpler models are, in general, limited by spatial assumptions. Moreover, some 

variograms can show a common feature known as a “pure nugget effect”, suggesting to avoid kriging. 

Deterministic interpolation approaches, such as the inverse squared-distance weighting method (ISDW), 

can also be used to build infestation maps. This method does not make any assumptions about the data and 

is not model-based. However, unlike the geostatistical approach, the essential parameters in crop pest 

studies such as the degree of spatial dependence and the practical range are not estimated, thus making it 

impracticable to carry out studies on sampling for pest monitoring purposes or studies on within-field 

insect dispersion/mobility. 

In this paper we present a heuristic method based on the MWK approach, called the Circular Variable 

Radius Moving Window method (CVRMW), to perform interpolation/prediction of spatial phytopathogenic 

data as an alternative to kriging and other interpolation methods that can deal with spatial heterogeneity. A 

code in R language is also presented. 

Material and methods 

The dataset used to illustrate the method consists of 20 spatial observations of nematode density 

(individuals per dm3 of soil). A 50 × 50 prediction grid was used for the predictions. Three methods were 

applied: ordinary kriging, ISDW and CVRMW. In order to evaluate and compare the prediction accuracies 

obtained with ISDW and CVRMW, we have calculated the percentual absolute mean error (PAME) through 

the difference between the observed and the predicted values. All the statistical analyses and computations 

were performed in R (http://www.R-project.org/). Additionally, a video illustrating the CVRMW method is 

available from: https://youtu.be/mmg5jRti8gs. 

Calculation 

The proposed method is basically a mixture of MWK and ISDW. In the latter, spatial predictions are 
performed through the weighted mean of all spatial observations via the inverse of the squared distances to 
the predicted point. In addition, the CVRMW method consists of predicting spatial points using only the 
data within a circular window. This is done through the mean weighted by the inverse of the squared-
distances between a prediction location and the spatial points within a radius h that varies according to the 
location and is determined to meet the objective function of minimizing the index of variation (the ratio 
between the coefficient of variation and the square root of the sample size). The window is then moved to 
the next prediction location, and the procedure is repeated for all prediction points. Thus, both of the base 
methods of CVRMW meet Tobler’s first law.  

A mathematical formulation is given as follows. Take Z(si) as the spatial observation at the coordinates si 

(i = 1, 2, …, N) and        as the k-th point to be predicted. Then, 

         
     

    
 

     
       

 

    
 

     
    

  

 

where:       is the number of obsevations limited by the radius    and     
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Algorithm 

The first step of the algorithm (Figure 1) for implementing CVRMW in R is to define the inputs: i) the 

sampling data, ii) the geographical coordinates of the sampling points, and iii) the prediction grid. 

 

Figure 1. Pseudocode of CVRMW. 

In Step 2, the loop process is properly given by defining an index variable ‘i’, a sequence ending at ‘N’, 

and the number of prediction points. In Step 2.1, the Euclidian distances between every sampling point 

(coords) and every point of the prediction grid are calculated and stored in the object ‘d’, which is a vector of 

dimension n (the number of sampling points). The prediction weights, w, are defined as the inverse squared-

distances, and a restriction given in case ‘d’ is zero. In this case, w is assumed to be the maximum calculated 

value. In Step 2.2, an auxiliary function is written in order to calculate the index of variation. This makes the 

code faster and easier to debug. In Step 2.3, a sequence of length 200 is created to determine the radius to be 

used for predicting the i-th spatial point in ‘grid’. The index of variation of the spatial observations within 

each radius is calculated and stored in ‘vari’. The radius value is a value in ‘seq.d’ corresponding to the 

minimum value of ‘vari’. In Step 2.4, those sampling points within the i-th radius or less are computed and 

stored in the object ‘id’, which is a list of characters indicating the sampling points. The i-th predicted value 

is the weighted mean of the spatial observations in ‘id’ considering their weights stored in ‘w’. The 

prediction is stored as a column of the data frame ‘pred’. The number of sampling points used for the i-th 

prediction and the standard error are stored as columns in ‘pred’ as well. The loop is broken when the last 

location in ‘grid’ is taken. 

In Step 3, if the user passes the same input objects to ‘coords’ and ‘grid’, the percentual absolute mean 

error (PAME) is calculated and printed (a side effect).  
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Features 

The function accepts a numeric vector containing the sampling data as the input for the argument ‘data’. The 

argument ‘coords’ must be a numeric matrix or data.frame containing the geographical coordinates of the sampling 

points. The argument ‘grid’ must be a numeric matrix or data.frame with the same number of columns as ‘coord’. 

The output is an object of the ‘data.frame’ class with the same number of rows as ‘grid’. The first 2 or 3 

columns (in general) correspond to the input grid. Then, the following columns are used: ‘pred’ – the spatial 

predictions, ‘SE’ – the standard error of the predicted value, ‘radius’ – the length of the radius used for each 

prediction, and ‘n’ – the number of sampling points used for each prediction. 

Results and discussion 

The graphical solution of the spatial interpolation is given in Figure 2. With the three methods, an East-West 

gradient is observed, although the level of detail is lower and a smoother solution occurs with kriging. Using 

CVRMW, the predicted values do not represent unbiased predictions as in kriging methods. However, the PAME 

in map (C) for ISDW is 35.08% compared with 30.04% in map (D) for CVRMW. In addition, an analysis of the 

spatial dependence can be done through the frequency distribution of the calculated radii (Figure 3A). In this 

case, there is a pattern of spatial dependence within 0.0004 degrees. This is not as easily observed using a 

classical omnidirectional variogram (Figure 3B), where a wave model was fit. Nonetheless, we found the estimate 

ϕ = 0.0004 for the range parameter to be quite close to the upper limit of the most frequent radius interval 

(0.0005 degrees) observed with CVRMW. The mean of the prediction standard errors using the CVRMW 

method was 365 (±150) nematodes dm-3 compared with 1,070 (±24) nematodes dm-3 using ordinary kriging. 

 

Figure 2. Infestation (nematodes dm-3 soil) maps. (A) The sampling points are in blue, the prediction grid is in red, and the point size 

represents the relative infestation; (B) heat map via ordinary kriging; (C) heat map via the ISDW method; and (D) heat map via the 

CVRMW method. 
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Yawson et al. (2017) did not find substantial differences in mapping the spatial distribution of the 

nematode population in organic and conventional fields using ISDW and ordinary kriging. Souza, Bazzi, 

Khosla, Uribe-Opazo, and Reich (2016) observed that ISDW performed slightly better at predicting crop 

yields than ordinary kriging. Rhodes, Liburd, and Grunwald (2011) obtained flower thrip infestation maps 

with similar accuracy using inverse distance weighting and ordinary kriging. On the other hand, Pimentel et 

al. (2017) stated that inverse distance weighting and ordinary kriging did not perform so well at predicting 

Ceratitis capitata infestations due to the spatial heterogeneity and topographical conditions. These authors 

recommended using a geographic weighted regression (GWR) instead.  

(A) 

 

(B) 

 

Figure 3. (A) Kernel density of the calculated radii of CVRMW and (B) omnidirectional classical variogram. 

Spatial dependence is commonly studied through the analysis of variograms, such as that presented in 

Figure 3B. Nevertheless, using CVRMW allows one to actually see “where” the spatial dependence is larger 

in the field by building a map of the calculated radii. 

Since predictions are performed using a loop, large datasets may increase the processing time. The 

timings for several analyses can be seen in Table 1. The larger the size of the prediction grid is, the more 

time used by the process. Nevertheless, note that the number of spatial observations (sampling points) only 

slightly affects the processing time. 

Table 1. Timing* (in seconds) for the analyses performed with various data sizes. 

Sampling 

Points 

Prediction grid 

20 × 20 50 × 50 100 × 100 

20 5.68 44.09 223.06 

60 5.71 47.59 223.28 

200 5.75 46.76 226.53 

*Based on an Intel® Core™ i5 1.40 GHz with 3.71 GB of RAM. 

Conclusion 

An alternative computer-based heuristic method to perform spatial predictions was developed and 

implemented in R. The method consists of a local interpolator with stochastic features. It allows one to 

build effective detailed maps and to estimate the spatial dependence without any assumptions on the 

spatial process. 
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