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ABSTRACT. Accurate forest biomass estimates require the selection of appropriate models of individual 

trees. Thus, two properties are required in tree biomass modeling: (1) additivity of biomass components 

and (2) estimator efficiency. This study aimed to develop a system of equations to estimate young 

eucalyptus aboveground biomass and guarantee additivity and estimator efficiency. Aboveground 

eucalyptus biomass models were calibrated using four methods:  generalized least squares (GLS), weighted 

least squares (WLS), seemingly unrelated regression (SUR), and weighted seemingly unrelated regression 

(WSUR). The approaches were compared with regard to performance, additivity, and estimator efficiency. 

The methods did not differ with regard to the mean biomass estimation; therefore, their performance was 

similar. The GLS and WLS approaches did not satisfy the additivity principle, as the sum of the biomass 

components was not equal to total biomass. However, this was not observed with the SUR and WSUR 

approaches. With regard to estimator efficiency, the WSUR approach resulted in narrow confidence 

intervals and an efficiency gain of over 20%. The WSUR approach should be used in forest biomass modeling 

as it resulted in effective estimators while ensuring equation additivity, thus providing an easy and accurate 

alternative to estimate the initial biomass of eucalyptus stands in ecophysiological models. 

Keywords: nonlinear seemingly unrelated regression; weighting procedures; model error structure; biological consistency; 
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Introduction 

Biomass is the most important variable when evaluating carbon dynamics, carbon sequestration, and 

forest productivity (Fu, Zeng, & Tang, 2017). Direct biomass measurements require destructive sampling, 

which is both complicated and expensive. However, alternative variables to biomass, such as root collar 

diameter, individual tree diameter at 10 cm height, diameter at breast height, total height, commercial height, 

live crown length, and age are compatible with individual or stand biomass models (Picard, Santi-André, & 

Henry, 2012; Wang, Zhao, Liu, Yang, & Teskey, 2018). Over the years, forest science has increasingly 

incorporated statistical models into individual and stand biomass estimations (Picard et al., 2012; Zhao, Kane, 

Markewitz, Teskey, & Clutter, 2015). Most studies have applied different models approaches; however, these 

models have considered fitted biomass components independently and have not taken into account inherent 

correlations among them (Parresol, 1999). 

Biomass partitioning depends on the accuracy of total and component biomass estimations. For example, 

ecophysiological studies are required that evaluate the carbon balance and resource use (Binkley, Stape, & 

Ryan, 2004), nutrient allocation (Viera, Schumacher, Bonacina, Oliveira Ramos, & Rodriguez-Soalleiro, 

2017), tree responses to planting density, water deficits (Hakamada, Hubbard, Ferraz, Stape, & Lemos, 2017), 

and forest products, such as pulpwood and bioenergy. 

When developing allometric models, the sampled trees must be carefully selected in an efficiency and 

consistent manner to obtain accurate estimates of individual tree biomass. These models should meet 

expectations regarding estimation performance, biological consistency, and estimator efficiency. Estimation 
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performance refers to the quality of an estimate. Biological consistency refers to the additivity of components 

with regard to total biomass. Estimator efficiency refers to the consistency of selecting models that result in 

narrower confidence intervals (Parresol, 2001; Behling et al., 2018). 

To meet the aforementioned expectations, models must be fit to estimate individual and total tree biomass 

components considering additive systems and restrictions (Parresol, 2001; Vonderach, Kändler, & Dormann, 

2018). Zellner (1962) proposed seemingly unrelated regression (SUR), which considers simultaneous fitting 

and a correlated system of either linear or nonlinear equations. 

Parresol (2001) provided a methodology for using seemingly unrelated regression, and applications of this 

approach have been carried out in conifer stands in China (Dong, Zhang, & Li, 2014; Wang et al., 2018), the 

United States (Zhao et al., 2015), and Brazil (Sanquetta et al., 2015) as well as in eucalyptus stands in Portugal 

(António, Tomé, Tomé, Soares, & Fontes, 2007) and Spain (Vega-Nieva, Valero, Picos, & Jiménez, 2015). 

These studies have taken into account stands of middle to advanced age. Even so, considering the importance 

of forest production in Latin America, particularly that of eucalyptus stands, environmental management for 

ensure high productivity (Payn et al., 2015), ecophysiological models requires that guarantee consistency and 

efficiency with regard to biomass estimations, especially during the first years of forest development. 

For this reason, Behling et al. (2018) indicated that the best model should consider all previously identified 

characteristics simultaneously. In addition, both evaluation and fitting compatible biomass equations are 

important for predicting stand biomass at different stand ages, scaling biomass or carbon stocks, and 

assessing root: shoot or biomass component ratios. For example, in eucalyptus forest management plans, 

nutrient budgets and the potential of forests to offset anthropogenic carbon emissions are important 

considerations (Nizami et al., 2017). In addition, accurate individual biomass estimates may allow us to 

understand the difference productivity responses of different eucalyptus genotypes to  management and 

climate effects. 

This study aimed to analyze the statistical estimates, biological consistency, and efficiency of independent 

and additive systems models for biomass estimations in young eucalyptus stands. In particular, this study 

focused on an additive system for modeling individual tree biomass in young eucalyptus stands, considering 

that total aboveground biomass model needed to be compatible with the sum of biomass components. We 

hypothesized that (i) systems models would provide better biomass estimates than independent models and 

(ii) biological consistency would always be related to parameter efficiency in biomass models.  

Material and methods 

The data of this study were collected in the experimental project ‘EUCAHYDRO II: Predictive model of 

water use, water use efficiency and drought resistance of Eucalyptus plantations and genotypes’ which aimed 

to evaluate physiological traits and environmental factors that drive initial growth behavior in eucalyptus 

stands. The project was established on October 31, 2017 in the Yumbel, Bio-Bio region in southern Central 

Chile (37o8′0.01″ S, 72o27′34.70′′ W). 

The soils in the study site are volcanic black sands with low water-holding capacity. A warm-summer 

climate that is classified as Mediterranean (Csb) is present in the region. The annual rainfall (mean of 1299 

mm) occurs predominantly during winter (~ 60%). The mean annual temperature is 14.7 oC (1979-2014), with 

maximum and minimum temperatures of 40oC in summer (February) and -5oC in winter (June). 

The experiment was carried out with three repetitions and two borderlines. The plots consisted of sixteen 

trees planted with 1.5 × 1.0 m spacing. The data consisted of the aboveground biomass measurements of 136 

sample trees divided into 34 genotypes. The selected eucalyptus genotypes were divided into three species or 

crosses, which are the most commonly planted species by Chilean forest companies. The species or crosses 

consisted of sixteen Eucalyptus globulus Labill. genotypes, three Eucalyptus nitens (H.Deane & Maiden) 

genotypes, and fifteen Eucalyptus nitens x Eucalyptus globulus crosses. 

The soil was prepared without a subsoiler. Weed control was carried out with glyphosate (2.5 L ha-1) 

until crown closure. Fertilization included the application of 30 g of controlled-release fertilizer 

(Basacote® Plus 12M) per plant at planting. The trees were irrigated at planting and until March 2018 and 

from November 2018 to February 2019. Both irrigation periods took place during the dry summer months 

and consisted of the application of 1.6 L of water m-2 h-1. The total amount of water applied during the 

spring and summer months was 664.5 mm during November 2017 to March 2018 and 157.8  mm during 

November 2018 to February 2019. 
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The aboveground biomass of individual trees was measured using a destructive method (Picard et al., 2012) 

when the trees reached 18.5 months in age. The trees were selected according to a distribution based on the 

diameter 10 cm above the groundline (d), and four trees were selected per genotype. The selected trees 

consisted of (1) a tree with the greatest d value, (2) a tree with the d mean value plus one standard deviation, 

(3) a tree with the mean d value, and (4) a tree with the mean d value minus one standard deviation. For each 

tree that was harvested, we separated the aboveground biomass into the stem (wood + bark), branch, and leaf 

components. First, the individual trees were felled and removed from the experimental site. Second, d was 

measured with a caliper (mm), total height (h) was determined with a measuring tape (m), and the branch 

diameters (bd) at 2 cm from the stem insertion point were measured with a caliper (mm). 

After all branches were measured, we determined the bd range per genotype. We randomly selected 15 

branches per genotype, and the branches were cut 2 cm from the stem insertion point. For each cut branch, 

we separated the living foliage from the wood of the branch. The foliage was dried them to a constant weight 

at 105oC. The biomass of individual tree branches (wb) and leaves (wl) was estimated by fitting exponential 

models as a function of bd per genotype, as follow: 

𝑓(𝑊𝑏; 𝑊1  =  𝛽0 ∗ 𝑒(𝑏𝑑∗𝛽1)  

After removing the branches, the stem was sectioned into three or four sections. Individual tree stem 

biomass was determined with a balance with a precision of 0.05 kg. A sample disc 8-cm thick was cut from 

each tree stem 10 cm from the groundline to determine the moisture content with an analytical balance with 

a precision of 0.01 g. The dry weights of the discs were measured after the samples were dried to a constant 

weight at 105oC. Then, individual stem biomass was calculated based on the ratio of dry biomass to fresh 

biomass. 

The estimated biomass component models were based on a nonlinear equation with additive error terms. 

These are the basic model forms that have been used in other forest stand studies (António et al., 2007). The 

independent variables in the models were d, dh, and d2h. 

𝑊𝐶 =  (𝛽𝑏 ∗ 𝑥1
𝛽1 … 𝑥𝑛

𝛽𝑛) + 𝜀1 

where: 𝑤𝑐  is the dry biomass component, 𝑐 (stem, branches, leaves, or total) and 𝛽 are model coefficients, 𝑥𝑛 

are the independent variables, and 𝜀𝑡 is the random error of the 𝑡th observation. 

In the first step, each biomass component was independently fitted using a generalized least squares (GLS) 

approach with the MODEL procedure in SAS® software (Statistical Analysis System [SAS], 2009). 

The model coefficients were equal to zero as the initial parameters in the interaction process. When 

selecting the best model for each biomass component, the significance of the parameters (α = 0.05) was 

considered, and the following statistics were calculated: 

𝑀𝑅𝐸𝑆 =  
∑ (𝑊𝑐− 𝑊𝑐−𝑒𝑠𝑡)𝑛

𝑖=1

𝑛
       𝑅𝑀𝑆𝐸 = √

∑ (𝑤𝑐−𝑤𝑐−𝑒𝑠𝑡)2𝑛
𝑖=1

𝑛−𝑝
 

𝑅𝑎𝑑𝑗
2 = (

∑ (𝑤𝑐−𝑤𝑐−𝑒𝑠𝑡)𝑛
𝑖=1

∑ (𝑤𝑐−𝑤𝑐
−

)𝑛
𝑖=1

) (
𝑛−1

𝑛−𝑝
)        𝐶𝑉 = (

𝑅𝑀𝑆𝐸

𝑤𝑐
− ) ∗ 100 

where; 𝑀𝑅𝐸𝑆 is the mean residuals (Kg), 𝑅𝑀𝑆𝐸 is the root mean square error (Kg), 𝑅𝑎𝑑𝑗
2  is the fitted coefficient 

of determination (%), 𝐶𝑉 is the coefficient of variation (%), wc-est is the estimated dry biomass of component 

𝑐, 𝑛 is the number of data used in the fitting, p is the number of parameters in the model, and 𝑤̅𝑐 is the mean 

value of the observed dependent variable for component c. 

In the second step, the models were fitted using SUR to guarantee additivity (Vega-Nieva et al., 2015). The 

system model was composed of stem, branch, leaf, and total biomass according to the specification that total 

biomass was a function of the independent variables in the equations of the biomass components. SUR was fitted 

considering the best models selected for the independent fitting. The initial parameters in the interaction process 

were equal to zero. Iterative convergence to minimize the residual sum of squares was performed with the Gauss–

Newton method. The analysis was performed in SAS® using the ITSUR option in the MODEL procedure. 

In the third step, residual heteroscedasticity of the GLS was determined with graphical analyses. The 

estimated residues (êi) of the GLS model were used as the dependent variable in the error variance model, 

taking the natural logarithm (ln) of the square residues [(êi)2]. 
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(𝑒𝑖

^
)

2

= (𝑤𝑐 − 𝑤𝑐−𝑒𝑠𝑡)2      𝑙𝑛 (𝑒𝑖

^
) = 𝛽0′ + 𝛽1′ ∗ 𝑙𝑛(𝑥1) + ⋯ + 𝛽𝑛′ ∗ 𝑙𝑛(𝑥𝑛) 

The natural logarithm of independent variables fitted by GLS was used to define a matrix, Δ, which was an 

element-wise square root based on the inverse of the weight matrix for observation, 𝑖, in component 𝑐. 

𝛥𝑖𝑐 =
1

√𝑥1
𝛽1′ ∗ … ∗ 𝑥𝑛

𝛽𝑛′

 

The fourth step employed the same approach as the third step; however, the estimated SUR errors were 

used to model the error variance and weight calculations resulting in weighted seemingly unrelated regression 

(WSUR). After fixing the weighting functions in steps three and four, we refitted the equations in steps one 

and two using the MODEL procedure in SAS®. 

According to Parresol (1999, 2001), the β estimation is obtained by minimizing the residual sum of squares: 

𝑆(𝛽) = [𝑦 − 𝑓(𝑋, 𝛽)]′[𝑦 − 𝑓(𝑋, 𝛽)] 

𝑆2(𝛽) = 𝜎̂2[𝑍(𝛽)′𝑍(𝛽)]−1 

𝜎̂2 =
𝑆(𝛽)

𝑇 − 𝐾
 

𝑣̂(𝑦̂𝑖) = 𝑍(𝛽)𝑖
′𝑆2(𝛽)𝑍(𝛽)𝑖

′ 

where: S(β) 𝑆(𝛽) is the residual sum squares, S2(β) is the variance-covariance matrix, 𝜎̂2  is the variance, Z(β) 

is the partial derivative matrix, T is the number of observations, K is the number of parameters in the model, 

and 𝑣̂(𝑦̂𝑖) is the variance of mean estimated observation i. 

The weighted least square (WLS) estimator was defined as: 

𝛽 = (𝑋′𝛹(𝜃̂)−1𝑋)−1𝑋′𝛹(𝜃̂)−1𝑦 

𝑆(𝛽) = [𝑦 − 𝑓(𝑋, 𝛽)]′𝛹(𝜃̂)
−1

[`𝑦 − 𝑓(𝑋, 𝛽)] 

where: 𝛹(𝜃̂) is a diagonal matrix of weights dependent on a fixed number of parameters denoted by vector 𝜃.  

For more details, see Parresol (1999). The system matrix of weights was written in block-diagonal form: 

𝛹𝑖(𝜃𝑖) = [

𝛹1(𝜃1) 0 ⋯ 0
0 𝛹2(𝜃2) ⋯ 0
⋮ ⋮ ⋱ 0
0 0 0 𝛹𝑛(𝜃𝑛)

] 

Finally, the confidence interval of the mean estimated value was defined as: 

𝐶𝐼 = [𝑦̂ ± 𝑡𝛼
2

√𝑣̂(𝑦̂)] 

where: Cl is the confidence interval, t is the value of t distribution at 95% probability. 

The estimate of vector β employing SUR, which minimizes the residual sum of squares, was given by a 

restriction of the parameter β: 

𝛽 = [𝑦 − 𝑓(𝑋, 𝛽)]′(∑−1 ⊗ 𝐼)[𝑦 − 𝑓(𝑋, 𝛽)] 

∑̂𝑏 = [𝐹(𝛽)′(∑̂−1 ⊗ 𝐼)𝐹(𝛽)]
−1

 

𝜎̂𝑆𝑈𝑅 =
𝜀′(∑−1 ⊗ 𝐼)𝜀

𝑀𝑇 − 𝐾
 

𝑆2
𝑦̂𝑗

= 𝐹𝑗(𝛽)′(∑̂𝑏)𝐹𝑗(𝛽) 

where: ∑ is the covariance matrix, ⊗ is the Kronecker product, I is identity matrix, 𝐹(𝛽) is partial 

derivatives for the SUR system, ∑̂𝑏 is the estimated covariance matrix of parameter, 𝜎̂𝑆𝑈𝑅 is the variance 

of SUR, M is the number of equations used, and 𝑆2
𝑦̂𝑗

 is estimated variance from the equation jth of SUR of 

the ith observation (𝑦̂𝑗𝑖). 

The estimated covariance matrix of the parameter and variance of weighted-nonlinear seemingly 

unrelated regressions were calculated as follows: 
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∑̂𝑏𝑤 = [𝐹(𝛽)′(∑̂−1 ⊗ 𝐼)(𝛹(𝜃̂)−1)𝐹(𝛽)]
−1

 

𝜎̂𝑊𝑆𝑈𝑅 =
𝜀′𝛥̂′(∑−1 ⊗ 𝐼)𝛥̂𝜀

𝑀𝑇 − 𝐾
 

𝑆2
𝑦̂𝑗

= 𝐹𝑗(𝛽)′(∑̂𝑏𝑤)𝐹𝑗(𝛽) 

where: ∑̂𝑏𝑤 is the covariance matrix of parameter in WSUR, 𝜎̂𝑊𝑆𝑈𝑅 is the variance of WSUR equations, 𝛥̂ is the 

matrix of weights. 

The confidence interval of the mean estimated value at 95% probability for SUR and WSUR was defined as follows: 

𝐶𝐼 = [𝑦̂ ± 𝑡𝛼
2

√𝑆2
𝑦𝑗

] 

For more details, see Parresol (2001). 

Biological consistency was assessed in relation to the additivity of the biomass components with regard to 

total biomass and was only tested for the equations fitted by independent models in steps one and three. If 

the condition (wleaves + wbrances + wstem) – wtotal ≠ 0 was not satisfied, then the biomass estimates were considered 

to lack biological consistency. 

The efficiency of the estimators of the biomass equations fitted by all steps was assessed in relation to the 

precision of the calculated confidence intervals  as follows (Parresol, 2001): 

𝑃𝐼𝐶𝑖 =
𝐶𝐼𝑖

𝑤𝑜𝑏𝑠𝑖
− 𝑤𝑒𝑠𝑡𝑖

 

where: 𝑃𝐼𝐶𝑖 is the precision of the confidence interval for observation 𝑖, 𝐶𝐼𝑖 is the confidence interval for 

observation i, 𝑤𝑜𝑏𝑠𝑖
 is the observed value for observation i, and 𝑤𝑒𝑠𝑡𝑖

 is the estimated values for observation i. 

The effect of the lack of additivity and efficiency on the estimates of biomass components and total 

biomass at the species level were evaluated with the forest inventory data. The biomass components and total 

biomass were estimated considering the last forest inventory assessment and extrapolated to hectare scale. 

The estimates were compared using a Chi-square test, in which the null hypothesis assumes that the values 

estimated by each step are equal at 95% probability (Behling et al., 2018). 

Results 

Mean bd values ranged between 7.5 and 9.0 mm among eucalyptus genotypes. The minimum and 

maximum bd values were 1.06 and 29.32 mm, respectively, with fewer branches present with either small or 

large bd. The relationship between bd and crown biomass followed similar patterns among eucalyptus 

genotypes, and the largest branches presented the largest biomass values (Figure 1). The R²adj and RMSE of 

the fitted exponential models were 0.92 ± 0.07 and 9.45 g ± 6.58, respectively, for branch biomass and 0.88 ± 

0.08 and 12.96 g ± 8.67, respectively, for leaf biomass. 

 

Figure 1. Relationship of branch diameter to (a) branch biomass and (b) leaf biomass for 18.5-month-old Eucalyptus globulus, 

Eucalyptus nitens, and E. nitens x E. globulus individuals in Yumbel, Chile. 
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The summary statistics for d, h, and the biomass components of all sample trees are shown in Table 1. The 

coefficients of variation (CV) were higher for biomass components (i.e., 34.62, 36.36, 33.32, and 31.17 for the 

stem, branch, leaf, and total biomass, respectively) compared those of d (17.33) or h (10.53). The Pearson 

correlations between the biomass components and d or h were positive (0.68 – 0.92) and significant at 1%. 

However, the correlation coefficients for biomass and d were higher than those for biomass and h. With regard 

to the relationships among biomass components, values greater than 0.90 were found, especially between 

stem and total biomass and branch and leaf biomass (data not shown). 

Table 1. The mean, minimum (Min), maximum (Max), standard deviation (SD), and coefficient of variation (CV) values for the 

diameter 10 cm above the groundline (d), total height (h), and the aboveground biomass components for 18.5-month-old 

Eucalyptus globulus, Eucalyptus nitens, and E. nitens x E. globulus individuals in Yumbel, Chile. 

Statistics 
Tree variables Biomass of aboveground components (kg) 

d (cm) h (m) Stem Branch Leaf Total 

Mean 7.00 6.63 4.04 1.66 2.29 7.99 

S.D. 1.42 0.91 1.58 0.66 0.82 2.81 

CV 20.41 13.67 39.24 39.58 36.00 35.19 

 

Biomass partitioning was similar among eucalyptus species. Individual stem biomass represented 50% of 

the total biomass, ranging between 31 – 68%, 38 – 60%, and 34 – 62%, for E. globulus, E. nitens, and E. nitens 

× E. globulus, respectively. Individual branch biomass represented 20% of total biomass and ranging between 

12 – 27%, 14 – 28%, and 14 – 26% for E. globulus, E. nitens, and E. nitens × E. globulus, respectively. Individual 

leaf biomass represented 30% of the total biomass, and the largest variation among species ranged from 19 – 

42%, 23 – 33%, and 22 – 39%, for E. globulus, E. nitens, and E. nitens × E. globulus, respectively. Leaf biomass 

represented approximately 50% of crown biomass. 

For the equations fitted by GLS, we observed that most equations underestimated individual biomass 

(Table 2). Branch and leaf biomass presented the lowest worst values of R²adj, the highest RMSE, and the 

highest CV because these variables presented the weakest correlations with d or h when compared to those of 

stem and total biomass. 

The selection of the best model considered the statistical analysis in Table 2 and model parsimony for SUR 

fitting. The best model was determined by considering the variables d and h for stem biomass, d²h for branch 

and total biomass and d for leaf biomass. 

A pattern was detected in the increase of d and residual values, indicating that the residues fitted by SUR were 

not distributed in the same manner between tree sizes (Figure 2). As such, variability was present in the error model 

structure. To deal with this variation, the weight function was considered. The same behavior was observed when 

we compared GLS to WLS (data not shown). The weight functions used to correct the error variability used by WLS 

and WSUR are presented in Table 3 and show an improvement in the pattern of the residuals (Figure 3). 

Table 2. Generalized least squares (GLS) model performance considering mean residuals (MRES), root mean square error (RMSE), 

adjusted coefficient of determination (R²adj), and coefficient of variation (CV) for different independent variables (I.V.) in modeling the 

biomass components. 

Biomass components Performance 
I.V. 

d d h d²h 

Stem 

MRES 0.00867 -0.0005 0.00017 

RMSE 0.6724 0.6041 0.6031 

R²adj 82.00% 85.69% 85.52% 

CV 16.65% 14.95% 14.93% 

Branch 

MRES 0.00116 -0.0004 -0.0019 

RMSE 0.4779 0.4784 0.4788 

R²adj 47.69% 47.57% 47.49% 

CV 28.62% 28.65% 28.68% 

Leaf 

MRES -0.0037 -0.0064 -0.008 

RMSE 0.5551 0.5538 0.5539 

R²adj 54.59% 54.79% 54.79% 

CV 24.26% 24.21% 24.21% 

Total 

MRES 0.0043 -0.0109 -0.0126 

RMSE 1.2949 1.2413 1.2384 

R²adj 78.83% 80.54% 80.64% 

CV 16.19% 15.52% 15.49% 
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Figure 2. Residuals for the (a) leaf biomass, (b) branch biomass, (c) stem biomass, and (d) total biomass estimates for 18.5-month-old 

Eucalyptus globulus, Eucalyptus nitens, and E. nitens x E. globulus individuals using SUR in Yumbel, Chile. 

Table 3. Weight functions used to fit biomass components considering the diameter 10 cm above the groundline (d) and total 

height (t) for 18.5-months-old Eucalyptus globulus, Eucalyptus nitens, and E. nitens x E. globulus individuals in Yumbel, Chile. 

Biomass components  Weighted WLS Weighted WSUR 

Stem 
1

√𝑑2.970717 ∗ ℎ−1.12551
 

1

√𝑑2.521194 ∗ ℎ−0.33379
 

Branch 
1

√(𝑑2ℎ)0.954756
 

1

√(𝑑2ℎ)0.905923
 

Leaf 
1

√𝑑3.365521
 

1

√𝑑2.689988
 

Total 
1

√(𝑑2ℎ)1.00233
 

1

√(𝑑2ℎ)0.623724
 

 

 
Figure 3. Residuals of the (a) leaf biomass, (b) branch biomass, (c) stem biomass, and (d) total biomass estimates for 18.5-month-old 

Eucalyptus globulus, Eucalyptus nitens, and E. nitens x E. globulus individuals using WSUR in Yumbel, Chile. 
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The first hypothesis outlined in this paper was not supported, which suggests that systems models provide 

better biomass estimates than those of independent models for young eucalyptus stands. The estimated 

coefficients and their standard deviations indicated that similar variation was present among the four methods 

used in this study (Table 4). Large differences were found with regard to the interceptions of the equations (β0). 

Table 4. Parameter estimation  (𝛽̂) and statistical analysis results for the biomass models considering the generalized least squares 

(GLS), weighted least squares (WLS), seemingly unrelated regression (SUR), and weighted seemingly unrelated regression (WSUR) 

methods for 18.5-month-old Eucalyptus globulus, Eucalyptus nitens, and E. nitens x E. globulus individuals in Yumbel, Chile. 

Biomass Model 

Parameter 

MRES RMSE R²adj (%) CV (%) 𝛽̂0 𝛽̂1 𝛽̂2 

Mean SD Mean SD Mean SD 

Stem 

GLS 0.0476 0.0109 1.4340 0.094 0.8541 0.151 -0.0005 0.604 85.47 14.95 

WLS 0.0381 0.0081 1.4759 0.093 0.9243 0.152 -0.00039 0.606 85.34 15.02 

SUR 0.0401 0.0090 1.3485 0.090 1.0313 0.143 -0.00556 0.603 85.48 14.94 

WSUR 0.0278 0.0052 1.3121 0.074 1.2542 0.126 0.03406 0.617 84.84 15.27 

Branch 

GLS 0.0788 0.0260 0.5264 0.055 - - -0.0019 0.478 47.49 28.68 

WLS 0.0463 0.0123 0.6166 0.045 - - -0.0022 0.484 46.30 29.00 

SUR 0.1050 0.0329 0.4775 0.052 - - -0.0045 0.475 47.51 28.45 

WSUR 0.0354 0.0052 0.6574 0.025 - - 0.04203 0.488 45.46 29.22 

Leaf 

GLS 0.1803 0.0418 1.3017 0.114 - - -0.0037 0.555 54.59 24.26 

WLS 0.1257 0.0211 1.4849 0.087 - - -0.0104 0.561 53.56 24.53 

SUR 0.2235 0.0493 1.19320 0.108 - - -0.0037 0.555 54.58 24.26 

WSUR 0.1119 0.0126 1.5296 0.057 - - 0.05298 0.562 53.39 24.58 

Total 

GLS 0.2013 0.0369 0.6332 0.030 - - -0.0126 1.238 80.64 15.49 

WLS 0.1465 0.0222 0.6868 0.025 - - -0.0050 1.254 80.14 15.68 

SUR - - - - - - -0.0138 1.256 80.07 15.71 

WSUR - - - - - - 0.12908 1.281 79.26 16.02 

 

Considering the performance of equations, we can observe that there were similar RMSE, R²adj, and CV 

values for the methods employed. However, there were differences in MRES using WSUR, which 

overestimated the biomass values for all biomass components and standard deviations of the parameters. It 

was possible to observe a decrease in standard deviation (SD) when a weight function was used for the 

variability parameter estimation. 

The biomass estimates at the hectare level obtained by the GLS, WLS, SUR, and WSUR methods not 

significantly different when compared with a Chi-square test (p > 0.05). The mean values that were estimated 

according to the aforementioned methods were similar among biomass components, indicating that there 

was no difference with regard to the performance of the estimations (Figure 4). 

 

Figure 4. Biomass component estimates (t ha-1) considering the equations fitted by the GLS, WLS, SUR, and WSUR methods for the 

18.5-month-old Eucalyptus globulus, Eucalyptus nitens, and E. nitens x E. globulus individuals in Yumbel, Chile. 



Simultaneous estimation to eucalyptus biomass Page 9 of 13 

Acta Scientiarum. Agronomy, v. 43, e52126, 2021 

Biological consistency, according to the restriction that the sum of the biomass components must be equal to the 

total biomass, was not observed with the equations fitted by the GLS and WLS methods since (𝑤𝑙𝑒𝑎𝑣𝑒𝑠 + 𝑤𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 +

𝑤𝑠𝑡𝑒𝑚) − 𝑤𝑡𝑜𝑡𝑎𝑙 ≠ 0. The non-additivity discrepancy of the equations fitted by GLS and WLS at the tree level ranged 

from -1.68 – 8.28% and -1.76 – 7.05%. Biological inconsistency was also observed at the hectare level. The non-

additivity discrepancy of the equations ranged between -0.87 – 9.98% and -0.80 – 8.46% for GLS and WLS, 

respectively, resulting in mean differences of 0.004 t ha-1 and 0.005 t ha-1, respectively. Regardless, these differences 

were not very large, the GLS and WLS equations were considered to be biological inconsistent. 

Using the equations fitted by GLS, the precision of the estimates ranged from 0.56 – 24.56%, 0.38 – 34.08%, 

0.02 – 26.07%, and 0.22 – 21.87% for stem, branch, leaf, and total biomass, respectively. For the equations 

fitted by WLS, the values for stem, branch, leaf, and total biomass ranged from 0.38 – 20.72%, 0.20 – 27.95%, 

0.25 – 17.55%, and 0.13 – 17.49%, respectively. The biomass estimates of the components and total biomass 

using the equations fitted by WLS resulted in narrow confidence intervals and were more efficient than GLS. 

The equations fitted by SUR resulted in estimate precisions ranging from 0.09 – 8.13% (stems), 0.13 – 29.99% 

(branches), 0.67 – 23.67% (leaves), and 0.16 - 13.51% (total biomass). As expected, SUR was more efficient when 

estimating total biomass; however, SUR did not perform as well when estimating branch and leaf biomass when 

compared to those of WLS, indicating that biological consistency did not guarantee the most efficient estimators. 

Therefore, the second hypothesis outlined in this paper was also not supported. Biological consistency is not always 

related to parameter efficiency in biomass models for young eucalyptus stands since SUR showed biological 

consistency; however, it does not show higher estimation efficiency for crown biomass components. 

For WSUR, precision ranged from 0.02 – 9.12%, 1.53 – 11.43%, 0.11 – 13.06%, and 0.55 – 4.55% for stem, branch, 

leaf, and total biomass, respectively. The WUSR provided the most efficient estimators for all biomass components, 

resulting in a better model approaches when compared to those of GLS, WLS, and SUR. As shown in Figure 5, narrower 

confidence intervals were present with WSUR when compared to those of GLS, especially for branch and leaf biomass. 
 

 

Figure 5. Differences in confidence intervals (red lines) between branch, leaf, stem, and total biomass estimates using GLS (a, c, e, g) 

and WSUR (b, d, f, h) for 18.5-month-old Eucalyptus globulus, Eucalyptus nitens, and E. nitens x E. globulus in Yumbel, Chile. 
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The mean gain efficiency in the confidence intervals of the equations fitted by WSUR was calculated by 

𝐸𝐼𝐶 = (1 −
𝑃𝐼𝐶𝑊𝑆𝑈𝑅

𝑃𝐼𝐶𝑜𝑡ℎ𝑒𝑟−𝑚𝑒𝑡ℎ𝑜𝑑𝑠
), and the values were 33.05, 47.34, 34.64, and 64.71% for stem, branch, leaf, and 

total biomass, respectively. The efficiencies using WSUR were positive and sometimes greater than 50% when 

compared to those of the GLS, WLS, and SUR methods (Figure 6). 

 

Figure 6. Efficiency of the confidence intervals for the component and total biomass estimates fitted by WUSR compared to those of 

GLS, WLS, and SUR. 

Discussion 

The worst statistical evaluation of the power functions was found for the crown biomass components, 

while the best was observed for stem and total biomass. Similar results have also been found in other studies, 

such as those by António et al. (2007) with E. globulus in Portugal and Viera et al. (2017) with Eucalyptus 

saligna Sm. and Eucalyptus grandis Hill ex Maiden × Eucalyptus urophylla S. T. Blake crosses in Brazil. The 

reasons for this are two-fold. Firstly, the reason is that the crown biomass components, leaves, and branches 

were correlated to a lesser degree with d and h. Secondly, leaf and branch biomass were more variable and 

depend on age, temperature, relative humidity, soil water content, and the species or genotype, as highlighted 

by António et al. (2007) and Zhang et al. (2015). The relationships between crown biomass and d or h improves 

as forest stands age (Behling et al., 2018). 

The performance of the estimators in biomass models using the GLS, WLS, SUR, and WSUR methods 

were similar with regard to the quality of the statistical fitting. However, some statistics obtained by the 

equation fitted using SUR were better than those obtained with GLS while others were not. For WSUR, all 

statistics obtained by the fitted models were worse when compared to those of the other approaches. This 

is an effect of the flexibility of the estimator to meet the requirement of the additivity of biomass 

components in the SUR and WSUR methods, and it was also observed by Behling et al. (2018). Apart from 

this, the performance of the estimators did not affect the predictions, since the estimates of the biomass 

components and total biomass did not differ at either tree or hectare levels among the methods according 

the results of the Chi-square test. In conclusion, the GLS, WLS, SUR, and WSUR methods are equivalent 

with regard to performance. 

Modeling biomass components and total biomass with GLS has been widely used in forest science; 

however, this approach does not guarantee additivity and most often results in larger errors when expanded 

to larger forest inventory areas (Sanquetta et al., 2015). The condition of biological consistency was not 

satisfied for the equations fitted through GLS and WLS, and non-additivity was observed at the tree and 

hectare levels, resulting in positive and negative results. The biological inconsistency percentage was higher 

for GLS than for WLS, mainly due to the weight function for the corrected error variance structure. In addition, 

biological inconsistency was also higher at tree level compared to that at hectare level given that at tree level, 

positive and negative results do not cancel each other out, which results in greater inconsistency when 

compared to that at either the plot or hectare levels, as highlighted by Behling et al. (2018). 



Simultaneous estimation to eucalyptus biomass Page 11 of 13 

Acta Scientiarum. Agronomy, v. 43, e52126, 2021 

Most of the models used in biomass estimates for planted forests were not fitted considering additivity. 

Given that these equations did not achieve biological consistency, it is important to take precaution when 

using them, especially when considering the variance of total biomass, which is a function of the variances 

and covariances of the estimates of the other biomass components. To deal with the lack of additivity, other 

studies have used system equations with restrictions on model coefficients according to total biomass (Zhao 

et al., 2019). In this study, the SUR method guaranteed additivity and resulted in a reduction in the differences 

with regard to observed and estimated total biomass due to the correlations between biomass components, 

coefficient restrictions, and allometric relationships, which ensured biological consistency (Wang et al., 

2018). However, GLS and SUR presented residual heteroscedasticity, as has been found in other studies (Zhao 

et al., 2015; Vonderach et al., 2018). As the d and d²h values increased, the absolute value of the residues 

increased for all biomass components (leaf, branch, stem) and total biomass. If this is not corrected, the 

variance among larger trees would be underestimated and that among smaller trees would be overestimated 

(Parresol, 2001). 

A lack of consideration with regard to heteroscedasticity could lead to non-reliable parameter estimates 

of the biomass components, with increased variance and wide confidence intervals, which decreases estimator 

efficiency, as was found in this study. The correction of heteroscedasticity is accomplished by assigning a 

weight factor assigned to each tree (Zhang, Peng, Huang, & Zeng, 2016). Estimator efficiency results in a 

process with minimum variance, as was found for the WLS and WSUR methods, and results in narrow 

confidence intervals, especially for the crown biomass components. The WSUR improved the parameter 

efficiency and considered all the benefits of the simultaneous system of equations, although for some 

components, statistical evaluations were slightly worse than those for GLS and SUR. Nonetheless, the 

confidence intervals were better for WSUR compared to those of the other methods, showing that the variance 

in the biomass estimates was lower. 

Estimator efficiency was not always related to biological consistency since WLS showed biological 

inconsistency; however, WLS presented greater efficiency estimators than that of SUR. Although the crown 

biomass components are difficult to model, it is necessary to use an estimator that results more accurate 

estimates, primarily because the leaves are raw material that ensure energy production and are important 

components for ecophysiological modeling (Binkley et al., 2004). 

Zhao et al. (2015) highlighted that accurate modeling of young tree growth is necessary to understand 

forest development, schedule silvicultural treatments, and identify environmental variables that could 

influence initial biomass production. The biological consistency ensured by the additive equations is a 

desirable property in modeling biomass and affects the estimations of forest biomass. In addition to biomass 

additivity, a correction of heteroscedastic residues is established by the weight function of GLS methods and 

ensures that a reliable estimate of biomass with statistical efficiency is produced. Sanquetta et al. (2015) 

observed that the use of SUR had positive effects on confidence intervals. This was effect associated with the 

efficiency of the parameters obtained by applying WSUR in the present study, which made this approach a 

powerful tool for eucalyptus biomass models. 

The precision of the confidence intervals of the equations used with the WSUR approach generated 

estimators that are highly efficient, constituting an important alternative to forest ecophysiological models 

that estimate biomass. These approaches can be easily implemented in SAS using the MODEL procedure, or 

in other programs, despite the mathematical complexity associated with WSUR with regard to the estimated 

biomass values. Future studies should focus on the implementation of these approaches with eucalyptus 

forest stands of different ages and in different to evaluated the validity of the ecophysiology models, 

considering the relationships among dendrometric variables, biomass, and environmental management 

strategies. 

Conclusion 

The fitted procedures of this study do not differ with regard to the performance evaluation since the system of 

equations do not improve the predictions of the biomass components. The estimated total biomass from the GLS 

and WLS methods are not equal to the sum of estimated biomass components, resulting in biological 

inconsistencies. The models in WLS and WSUR produces present smaller variance and narrow confidence intervals, 

resulting in a more efficient estimators when compared to GLS and SUR. It is recommended that the WSUR 

approach be used with independent equations in forest ecophysiology models, for accurate biomass estimates. 
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