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ABSTRACT. Brachiaria brizantha is the most economically important forage grass in Brazil and is 

propagated through sowing. Producing high-quality seeds has been a constant challenge due to their 

uneven maturation. The development and application of precise and non-destructive methods for 

identifying internal damages to seeds, such as the X-ray test, which quickly indicates the quality of the lots, 

is of fundamental importance for the seed industry. In this work, the quality of Brachiaria brizantha seeds 

was analyzed based on the morphological characteristics observed in X-ray images that were related to 

viability using a mixture model under a Bayesian approach, with the following objectives: i) verify the 

adequacy of the Bayesian modeling used in the data analysis; ii) associate the efficiency of using 

radiographs as a way to assess the viability of the seeds; and iii) relate the classifications carried out by 

evaluators with the probability of originating normal or abnormal seedlings. The methodology applied for 

the analysis proved to be adequate. Further, the Bayesian estimates for parameters related to internal 

morphology were established with associated levels of uncertainty, which represents an advantage over 

usual frequentist methods. Based on the model's estimates, seeds evaluated as potentially unviable by three 

evaluators had practically no probability of germination and did not germinate in the test applied later. 

Seeds classified as potentially viable had a high probability of developing into normal seedlings, while 

73.27% showed this property in the germination test.  
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Introduction 

Pasture is the preferred form for forage production, which constitutes the natural basis of feeding 

herbivores kept in field conditions. Brazil stands out in the world in terms of its production, consumption, 

and export of forage grass seeds, with Brachiaria brizantha being the most important in terms of 

commercialization (Pereira, Oliveira, Rosa, & Kikuti, 2011; Silva, Martins, Cruz, Jeromini, & Bruno, 2017). 

Due to the tolerance and adaptability of Brachiaria to Brazilian soil and climatic conditions, as well as the 

relative ease of its management, it became responsible for advancing national livestock. Additionally, it 

provides pastures of reasonable quality and moderate investments. 

The use of high-quality seeds is essential because the establishment of pasture occurs through sowing 

(Batista, Cardoso, Binotti, Costa, & Sá, 2016a; Batista, Binotti, Cardoso, Costa, & Nascimento, 2016b). Thus, 

the need to obtain them has motivated the development of increasingly efficient production systems, as well 

as analysis procedures and methods that support the selection of seeds for cultivation (Cicero, Van Der 

Heijden, Van Der Burg, & Bino, 1998). Seed quality involves different attributes including viability. However, 

information related to viability, among other aspects, is difficult to obtain due to restrictions related to time 

and technological aspects (Medeiros, Pinheiro, Xavier, Silva, & Dias, 2020). 

Regarding Brachiaria brizantha seeds, the focus of this work, the long period of time in germination tests 

combined with seed dormancy contributes to the tetrazolium test being routinely used to estimate viability 

(Novembre, Chamma, & Gomes, 2006; Cardoso et al., 2014; Batista et al., 2016a). It is a biochemical test that 

demands time and expertise of the analysts. 

An interesting alternative for seed quality tests is the study of the internal morphology of seeds through 

the analysis of X-ray images. The use of X-ray images in seed evaluation was pioneered by Simak and 
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Gustafsson (1953) and has since found wide applicability. Methodologies have been proposed to improve seed 

quality with respect to its physical and physiological aspects, providing a rapid assessment of most species, 

including forage grasses, such as Brachiaria (Gomes Junior, 2010; Lima, Santos, Dutra, & Barros, 2013; Gomes, 

Martins, Martins, & Gomes Junior, 2014; Jeromini, Martins, Pereira, & Gomes Junior, 2019).  

X-rays do not affect germination, making it a quick, simple, and nondestructive test to perform. Other 

than identifying morphological aspects possibly associated with germination viability, they also allow an 

additional posterior analysis of the same seed (Copeland & McDonald, 2001; Bino, Aartse, & Van Der Burg, 1993; 

Menezes, Cícero, & Villela, 2005). Furthermore, methodological advances using X-rays allow the analysis of 

immature or aberrated embryos, predicting the presence of abnormal seedlings (Mondo & Cicero, 2005). 

The association of statistical methodologies for analyzing data from radiographic images is also of 

fundamental importance. In this context, the use of mixture models offers great versatility for analysis; when 

the mechanism that generates the observed data is unknown, they can be applied in various contexts (Marin, 

Mengersen, & Robert, 2005; Rufo, Martín, & Pérez, 2006; Schlattmann, 2009). For this purpose, it assumes 

that n elements in the sample come from J distinct and unidentified subgroups (or populations) in different 

proportions and, generally, the objective is to analyze these different populations and/or classify individuals 

according to their group of origin (Diebolt & Robert, 1994). 

Several methods have been proposed for the estimation of parameters in mixture models. When own 

priorities are available, the Bayesian method can be used and the analysis is simplified by introducing latent 

variables with a hierarchical structure (Tanner & Wong, 1987). 

Procedures belonging to the class of Markov Chain Monte Carlo (MCMC) method, especially the Gibbs 

sampler, allow sampling values from a posteriori conditional densities in complex multivariate models and 

represent a great advantage of the Bayesian inference (Simpson, Rue, Riebler, Martins, & Sorbye, 2017). 

Bayesian analyses have been applied in research studies associated with seed quality (Junqueira et al., 2016) 

and, especially, using a mixture model to evaluate the viability potential (Rocha, Sáfadi, & Carvalho, 2013). 

This work sought to associate morphological aspects to the quality of B. brizantha seeds through the visual 

inspection of X-ray images performed by three evaluators and to relate them with viability. The problem was 

modeled by a mixture of binomial distributions, and the parameters were estimated using the Bayesian method, 

with the following objectives: i) verify the adequacy of the Bayesian modeling used in the data analysis; ii) associate 

the efficiency of using radiographs as a way to assess the viability of the seeds; and iii) relate the classifications 

carried out by evaluators with the probability of originating normal or abnormal seedlings. 

Material and methods 

Experiment 

Four hundred seeds were randomly selected from the seed lot of B. brizantha cv. Marandu produced in the 

state of Mato Grosso in the 2016/2017 harvest. The experiment was conducted at the Central Seed Laboratory 

of the Department of Agriculture of the Federal University of Lavras (UFLA) in Lavras, Minas Gerais State, 

Brazil, according to the following procedure: 

1) Obtaining radiographic images of the seeds: The seeds were randomly subdivided into 8 subsamples of 

50 seeds arranged and fixed on an overhead transparency sheet using double-sided tape. They were numbered 

according to the rows and columns they occupied for identification purposes. They were then radiographed, 

without any preparation, with an intensity of 35 kV and an average of 14 seconds of exposure in a Faxitron 

HP Model MX20 device to generate digital images (Figure 1). 

The images obtained from each seed were individually analyzed by three specialists and classified as Full, 

Partially Full, Damaged, or Empty (Figure 2). The seeds classified as empty or damaged were considered 

potentially unviable. 

After the X-ray images were obtained, the seeds underwent the germination test according to the Rules 

for Seed Analysis(RAS) (Brasil, 2009). 

2) Germination test: This test was conducted by sowing the seeds onto two sheets of white blotting paper 

moistened with distilled water equivalent to 2.5 times the dry mass of the papers. They were arranged in 

acrylic boxes like gerbox (Figure 3), and maintained in a Biochemical Oxygen Demand (BOD) chamber with 

alternating temperatures of 20 - 35°C under a photoperiod of 12 hours of light and 12 hours of darkness.  

The evaluations of normal seedlings were performed according to the criteria established by RAS on the 

7th, 14th, and 21st day after sowing. 
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Figure 1. (a) seeds arranged for X-ray testing and (b) scanned image. 

 
Figure 2. X-ray images of Brachiaria brizantha seeds classified into four categories: Full (a), Partially Full (b), Damaged (c), or Empty (d). 

 
Figure 3. (a) Preparation of seeds for germination and (b) Germination at seven days. 

After completing the germination test, the remaining seeds were subjected to the tetrazolium test to verify 

their viability. 

3) Tetrazolium test: The remaining seeds were cut longitudinally using tweezers and a scalpel. They were 

then immersed in a 0.5% solution of 2-3-5 triphenyl tetrazolium chloride in dark flasks and kept in a BOD-

type germination chamber at 30°C for three hours (Brasil, 2009). After which, the seeds were evaluated as 

viable or non-viable based on the location and intensity of the color of their structures. 

Relative frequency method 

Each of the 400 radiographic images of seeds was classified as potentially unviable by three independent 

experts. We defined the number of evaluations of X-ray images of potentially unviable (Y = 0, 1, 2, and 3) 

Brachiaria seeds as random variable Y. The possible results are as follows:  

0: None of the three evaluators classified the radiographic image of the Brachiaria seed as potentially unviable; 

1: One of the three evaluators classified the images as potentially unviable; 

2: Two of the three evaluators classified the image as potentially unviable;  

3: The three evaluators classified the image as potentially unviable. 
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Let event N: the seed developed into a normal seedling and �̄�: the seed either developed into an abnormal 

seedling or did not germinate. We also consider that: 

λ = probability that the seed will develop into a normal seedling (P(N)); 

p1 = probability that the seed will develop into a normal seedling after being evaluated as potentially unviable; and 

p2 = probability that the seed will either germinate an abnormal seedling or not germinate, since it has 

been assessed as potentially unviable.  

The conditional distributions of the variable Y given the occurrence of events N and �̄�: are independent 

and given by binomials with parameters (3, p1) and (3, p2), respectively: 

𝑃(𝑌 = 𝑦|𝑁) = 𝐶3,𝑦𝑝1
𝑦
(1 − 𝑝1)

3−𝑦 and   𝑃(𝑌 = 𝑦|�̄�) = 𝐶3,𝑦𝑝2
𝑦
(1 − 𝑝2)

3−𝑦

         
(1) 

In turn, the marginal distribution of Y is: 

𝑃(𝑌 = 𝑦) = 𝑃(𝑁)𝑃(𝑌 = 𝑦|𝑁) + 𝑃(�̄�)𝑃(𝑌 = 𝑦|�̄�) =

 
= 𝜆𝐶3,𝑦𝑝1

𝑦
(1 − 𝑝1)

3−𝑦 + (1 − 𝜆)𝐶3,𝑦𝑝2
𝑦
(1 − 𝑝2)

3−𝑦 where  𝐶3,𝑦 = (
3
𝑦
)  (2) 

To estimate the parameters λ, p1, and p2 in equation (2), it is necessary to solve the system given by: 

{
 
 

 
 𝑃(𝑌 = 0) = 𝜆(1 − 𝑝1)

3 + (1 − 𝜆)(1 − 𝑝2)
3

𝑃(𝑌 = 1) = 3𝜆𝑝1(1 − 𝑝1)
2 + 3(1 − 𝜆) 𝑝2( 1 − 𝑝2)

2

𝑃(𝑌 = 2) = 3𝜆𝑝1
2(1 − 𝑝1) + 3(1 − 𝜆) 𝑝2

2( 1 − 𝑝2)

𝑃(𝑌 = 3) = 𝜆𝑝1
3 + (1 − 𝜆)𝑝2

3

                                      

(3) 

The solution of equation (3) was obtained using the Newton–Raphson iterative method (Ruggiero & Lopes, 1997). 

According to Bayes' theorem, the probability of the seed developing into normal seedlings given the 

number of evaluations as potentially unviable is: 

𝑃(𝑁 | 𝑌 = 𝑦) =
𝑃(𝑌 = 𝑦|𝑁) ⋅ 𝑃(𝑁)

𝑃(𝑌 = 𝑦)
=

𝜆𝐶3,𝑦𝑝1
𝑦
(1 − 𝑝1)

3−𝑦

𝜆𝐶3,𝑦𝑝1
𝑦
(1 − 𝑝1)

3−𝑦 + (1 − 𝜆)𝐶3,𝑦𝑝2
𝑦
(1 − 𝑝2)

3−𝑦

 

⇒ 𝑃(𝑁 | 𝑌 = 𝑦) =
𝜆𝑝1

𝑦
(1−𝑝1)

3−𝑦

𝜆𝑝1
𝑦
(1−𝑝1)

3−𝑦+(1−𝜆)𝑝2
𝑦
(1−𝑝2)

3−𝑦  with  𝑦 = 0,1,2,3.

          

(4) 

From these estimators, it is possible to establish the expected number of seeds that developed into normal 

seedlings (E(Ni)) depending on the number of classifications as potentially unviable (Y = y).  E(Ni) is obtained by 

the product of P (N|Y = y) with the observed number of images classified as potentially unviable in each category. 

Mixture model of two binomial distributions 

Expression (2) shows that the problem addressed can be modeled by a mixture of distributions (Stephens, 2000). 

Considering the binomial components, the density of Y is expressed as:  

𝑝(𝑦|𝛹) = 𝜆 (
3
𝑦
) 𝑝1

𝑦(1 − 𝑝1)
3−𝑦 + (1 − 𝜆) (

3
𝑦
) 𝑝2

𝑦(1 − 𝑝2)
3−𝑦

                       

(5) 

where 𝛹 = (𝜆, 𝑝1, 𝑝2), 𝜆, 𝑝1 and 𝑝2 are quantities that take on values in the range [0,1]. The likelihood function, 

for n = 400, is given by 

𝐿(𝛹|𝑦) = ∏ (𝜆 (
3
𝑦𝑖
) 𝑝1

𝑦𝑖(1 − 𝑝1)
3−𝑦𝑖 + (1 − 𝜆) (

3
𝑦𝑖
) 𝑝2

𝑦𝑖(1 − 𝑝2)
3−𝑦𝑖)𝑛

𝑖=1

               

(6) 

After assuming a model for the data, the next step is to assign a priori information to the unknown quantities. 

Priors distributions 

The a priori densities for parameters 𝜆 and 𝑝𝑗 (j = 1, 2) are, respectively,  

𝜆~𝐵𝑒𝑡𝑎(𝑎𝜆, 𝑏𝜆) =
𝛤(𝑎𝜆+𝑏𝜆)

𝛤(𝑎𝜆)𝛤(𝑏𝜆)
𝜆𝑎𝜆−1(1 − 𝜆)𝑏𝜆−1

                         

(7)

 

𝑝𝑗~𝐵𝑒𝑡𝑎(𝑎𝑝𝑗 , 𝑏𝑝𝑗) =
𝛤(𝑎𝑝𝑗+𝑏𝑝𝑗)

𝛤(𝑎𝑝𝑗)𝛤(𝑏𝑝𝑗)
𝑝
𝑎𝑝𝑗−1(1 − 𝑝)

𝑏𝑝𝑗−1

                            

(8) 

where 𝛤(⋅) denotes a Gamma function. 
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Equation (6) can be simplified by introducing latent random variables, which indicate the subpopulation each 

observation that make up y belongs to, by using the augmented data structure (Tanner & Wong, 1987). For each 

𝑦𝑖 observation, it is always possible to associate a latent allocation variable 𝑍𝑖 in a way that 𝑍𝑖 = 𝑗 indicates that 

𝑦𝑖 belongs to the j-th component of the mixture. Thus, 𝑍𝑖 has a Bernoulli distribution denoted by 𝑍𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜆). 

As already pointed out, the latent variables introduced were intended to classify each observation 𝑌 = 𝑦𝑖𝑗 

in one of two populations with j = 1, 2. The term 𝑛𝑗 indicates the number of observations classified in each 

subpopulation, where 𝑛𝑗 = ∑ ∑ 𝑧𝑖𝑗𝐼(𝑦𝑖 ∈ 𝐴𝑗)
2
𝑗=1

𝑛
𝑖=1  (if 𝑧𝑖𝑗 = 1 then 𝑦𝑖 ∈ 𝐴𝑗, and 𝐴𝑗 a subpopulation; otherwise 

 𝑧𝑖𝑗 = 0). The joint likelihood is: 

𝐿(𝛹|𝑦, 𝑧) = 𝜆𝑛1 [∏ (
3
𝑦𝑖1
)

𝑛1

𝑖=1
] 𝑝1

∑ 𝑦𝑖1
𝑛1
𝑖=1 (1 − 𝑝1)

3𝑛1−∑ 𝑦𝑖1
𝑛1
𝑖=1 × 

           ×  (1 − 𝜆)𝑛2 [∏ (
3
𝑦𝑖2
)

𝑛2
𝑖=1 ] 𝑝2

∑ 𝑦𝑖2
𝑛2
𝑖=1 (1 − 𝑝2)

3𝑛2−∑ 𝑦𝑖2
𝑛2
𝑖=1

                                  

(9) 

Complete posterior conditional densities 

The posterior joint distribution was obtained by combining the likelihood function and prior densities 

using Bayes' theorem: 

𝑝(𝛹|𝑦, 𝑧) ∝ 𝜆𝑛1𝑝1
∑ 𝑦𝑖1
𝑛1
𝑖=1 (1 − 𝑝1)

3𝑛1−∑ 𝑦𝑖1
𝑛1
𝑖=1 (1 − 𝜆)𝑛2𝑝2

∑ 𝑦𝑖2
𝑛2
𝑖=1 (1 − 𝑝2)

3𝑛2−∑ 𝑦𝑖2
𝑛2
𝑖=1 × 

× 𝜆𝑎𝜆−1(1 − 𝜆)𝑏𝜆−1 ×∏ 𝑝𝑗
𝑎𝑝𝑗−1(1 − 𝑝𝑗)

𝑏𝑝𝑗−12
𝑗=1

            

(10)

 
Conditional distributions were obtained using algebraic manipulations of equation (10). The complete 

posterior conditional distribution for 𝑝𝑗 is given by: 

𝑝(𝑝𝑗|⋯ ) ∝ 𝑝𝑗
∑ 𝑦𝑖𝑗
𝑛𝑗
𝑖=1 (1 − 𝑝𝑗)

3𝑛𝑗−∑ 𝑦𝑖𝑗
𝑛𝑗
𝑖=1 × 𝑝𝑗

𝑎𝑝𝑗−1(1 − 𝑝𝑗)
𝑏𝑝𝑗−1 

∝ 𝑝
𝑗

∑ 𝑦𝑖𝑗+𝑎𝑝𝑗−1
𝑛𝑗
𝑖=1

(1 − 𝑝𝑗)
3𝑛𝑗−∑ 𝑦𝑖𝑗

𝑛𝑗
𝑖=1

+𝑏𝑝𝑗−1

                         

(11)  

therefore 𝑝𝑗|⋯~𝐵𝑒𝑡𝑎 (∑ 𝑦𝑖𝑗
𝑛𝑗
𝑖=1

+ 𝑎𝑝𝑗 , 3𝑛𝑗 −∑ 𝑦𝑖𝑗 + 𝑏𝑝𝑗
𝑛𝑗
𝑖=1

)
  
with 𝑗 = 1, 2.

 
Similarly, we find the complete conditional distribution for the weight 𝜆 as:  

𝑝(𝜆|⋯ ) ∝ 𝜆𝑛1(1 − 𝜆)𝑛2𝜆𝑎𝜆−1(1 − 𝜆)𝑏𝜆−1 
      ∝ 𝜆𝑛1+𝑎𝜆−1(1 − 𝜆)𝑛2+𝑏𝜆−1

 
which is also a beta distribution, 𝜆|⋯~𝐵𝑒𝑡𝑎(𝑛1 + 𝑎𝜆, 𝑛2 + 𝑏𝜆). Finally, there is a posteriori conditional 

distribution for zi is: 

𝑝(𝑍 = 𝑧𝑖 |⋯ ) ∝ ∏ 𝜆
𝑗

𝑛𝑗𝑝
𝑗

𝑦𝑖𝑗(1 − 𝑝𝑗)
3−𝑦𝑖𝑗𝑘

𝑗=1 𝑝
𝑎𝑝𝑗−1(1 − 𝑝𝑗)

𝑏𝑝𝑗−1𝜆𝑎𝜆−1(1 − 𝜆)𝑏𝜆−1. 

Considering 𝑎𝜆 = 𝑏𝜆 = 𝑎𝑝𝑗 = 𝑏𝑝𝑗 = 1, it is possible to obtain non-informative (uniform) prior densities.  

The augmented data method is flexible for a Bayesian hierarchical treatment sampling of indicator 

variables 𝑍𝑖 (Bilancia & Pollice, 1999). The posterior probability of allocation for 𝑦𝑖 in the population 𝑗 = 1,  

𝑤𝑖1(𝑧𝑖 =1), is given by: 

𝑤𝑖1|𝜆, 𝑝1, 𝑝2 =
𝜆𝑝(𝑦𝑖| 𝑝1)

𝜆𝑝(𝑦𝑖| 𝑝1) + (1 − 𝜆)𝑝(𝑦𝑖| 𝑝2)
, 𝑖 = 1,⋯ , 𝑛

 
𝑤𝑖1|𝜆, 𝑝1, 𝑝2 =

𝜆 (
3
𝑦𝑖
) 𝑝1

𝑦𝑖(1 − 𝑝1)
3−𝑦𝑖

𝜆 (
3
𝑦𝑖
) 𝑝1

𝑦𝑖(1 − 𝑝1)
3−𝑦𝑖 + (1 − 𝜆) (

3
𝑦𝑖
) 𝑝2

𝑦𝑖(1 − 𝑝2)
3−𝑦𝑖

, 𝑖 = 1,⋯ , 𝑛. 

Consequently, 𝑍𝑖 will be sampled from a Bernoulli distribution with 𝑤𝑖1 
parameter. 

Sampling process 

The sampling process was carried out using the Markov Chain Monte Carlo (MCMC) method. It is an 

iterative stochastic process based on the successive simulation of values from a posteriori complete 
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conditional density. Because the conditional densities have known shapes and allow direct sampling, a Gibbs 

sampler was used. Its algorithm is given by:
 

i) Assign initial values 𝛹0 = (𝜆0, 𝑝1
0, 𝑝2

0) 

ii) For iteration t: 

a) Calculate 𝑤𝑖1
𝑡 |𝜆𝑡−1, 𝑝1

𝑡−1, 𝑝2
𝑡−1   with i=1, ⋯, n; 

 
b) Sample 𝑧𝑖

𝑡 from Bernoulli (𝑤𝑖1
𝑡 ) for i from 1 to n;

 
c) Sample 𝜆𝑡| 𝑛1

𝑡 , 𝑛2
𝑡 , 𝑧𝑡;  

d) Sample 𝑝1
𝑡| 𝑛1

𝑡 , 𝑆1
𝑡 , 𝑧𝑡 with 𝑆1

𝑡 = ∑ 𝑦𝑖1
𝑛1
𝑡

𝑖=1 ;
 

e) Sample 𝑝2
𝑡| 𝑛2

𝑡 , 𝑆2
𝑡 , 𝑧𝑡 with 𝑆2

𝑡 = ∑ 𝑦𝑖2
𝑛2
𝑡

𝑖=1 . 

The convergence of the chains was monitored by Raftery and Lewis criteria (Raftery & Lewis, 1992) and 

Heidelberger and Welch criteria (Heidelberger & Welch, 1983), implemented in the "boa" package (Smith, 

2007) in R (R Core Team, 2017). 

The expressions obtained for the complete a posteriori conditional densities, as well as those presented for 

the method of relative frequency, are the same in Achcar and Ruffino Netto (2003) and Rocha et al. (2013).  

Point estimates were obtained by the posterior mean of the simulated MCMC chains, and interval 

estimates were implemented through the highest posterior density (HPD) regions at 95% credibility. 

The analyses were performed using resources in the “gtools” package (Warnes, Bolker, & Thomas, 2018) 

in software R. 

Results 

The frequencies referring to the number of seeds classified as potentially unviable by the three evaluators 

are shown in Table 1. It was observed that 303 seeds were evaluated as potentially viable, which corresponds 

to 75.75% of the total seeds. On the other hand, 13.5% of them (54 seeds) were considered potentially 

unviable. For the remaining 43 seeds, there was no consensus between the evaluators’ ratings of the images. 

Table 1. Frequency distribution of the number of radiographic images of Brachiaria brizantha seeds classified as potentially unviable by 

three evaluators. 

Y: Number of classifications as 

potentially unviable 

Number of radiographic images 

(fi) 

0 303 

1 30 

2 13 

3 54 

Total 400 

 

Markov chains were simulated with 41,634 iterations using the Gibbs sampler algorithm. The first 12 

observations were discarded as a warm-up period ("burn-in"). To obtain an uncorrelated sample, a spacing (jump) 

between the sampled points of three iterations ("thinning") was considered, resulting in a final sample of size 13,866. 

These burn-in and jump values were based on a training sample according to the Raftery and Lewis test (1992). 

Table 2 presents the results obtained from the convergence tests using the methods of Raftery and Lewis 

(1992) and Heidelberger and Welch (1983). It was observed that all parameters had a dependency factor of I < 

5 (Raftery & Lewis, 1992). In addition, the chains for all parameters passed on the stationarity test, indicating 

that convergence was also achieved according to the criteria of Heidelberger and Welch (1983). 

Table 2. Results of tests to monitor convergence of Markov chains. 

Parameter Raftery and Lewis 

I 

Heidelberger and Welch 

Stationarity test 

Test Halfwidth 

𝜆 1.01548 Yes Yes 

p1 1.03364 Yes Yes 

p2 1.01548 Yes Yes 

I: dependency factor. 

Figure 4 shows the trace plots and density plots of the Markov chaim samples for each parameter. It is 

observed that the values oscillate around a constant value, which is indicative of stationarity. Thus, the 
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properties visualized in these representations corroborate the results of the tests used to monitor the 

convergence of the chains. There is also a greater symmetry for the densities of λ and p1 as well as a slight 

asymmetry to the left with respect to the density of p2. 

 
Figure 4. (a) Traces of the MCMC chains and (b) graphical representation of a posteriori densities for parameters λ, p1 and p2. 

Table 3 shows posterior means, standard deviations (SD), and HPD intervals at 95% credibility for the 

parameters of model λ, p1, and p2. As previously emphasized, λ assesses the probability that the seed develops 

into a normal seedling with a posteriori mean of 0.8304. The probability of the seed developing into an 

abnormal seedling or not germinating (0.1696) is referred to as (1 - λ).  

Table 3. Posterior mean, standard deviation (SD), and HPD interval at 95% credibility (LL: lower limit, UL: upper limit) for parameters 

λ, p1, and p2. 

Parameter Mean SD HPD interval 

LL UL 

  0.8304 0.0192 0.7925 0.8670 

p1 0.0319 0.0061 0.0200 0.0437 

p2 0.9244 0.0226 0.8806 0.9668 

 

On the other hand, it can be seen from the estimates that the conditional probability of the seed being evaluated 

as potentially unviable is small among those that developed into normal seedlings. It has posterior mean of 0.0319 

and a small standard deviation (0.0061), which shows coherence among the evaluators regarding the physiological 

aspects observed from the images. The probability that the seed was classified as potentially unviable among those 

that did not germinate (or developed into abnormal seedlings) was high (0.9244). 

Table 4 shows means, SDs, and regions of HPD credibility for the probability of the seed having developed 

into a normal seedling conditional on the realization of each value of the random variable Y = y (y = 0, 1, 2, 

3), that is, the number of evaluations as potentially unviable. For a seed that has not received any evaluation 

as potentially unviable (Y = 0), the event developing into a normal seedling is practically certain, since the 

posterior mean of the conditional probability is very close to one (0.9999) and the SD is approximately equal 

to zero (0.0001). There is also a high probability of developing into normal seedlings conditioned to Y = 1. For 

seeds whose number of evaluations as unviable was two or three, the conditional probabilities were low. Point 

and interval estimates were based on the combined MCMC samples to obtain other variables that were not 

initially considered in the model. 

Posterior point and interval estimates for the expected number of normal seedlings in each of the 

classifications are shown in Table 5. These values were obtained by the product between the frequencies 

observed in each class and the conditional probability of normal seedlings given the occurrence of the number 

of X-ray images considered potentially unviable. 
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Table 4. Posterior mean, standard deviation (SD), and lower (LL) and upper (UL) limits of HPD regions at 95% credibility regarding the 

conditional probability of the seed to develop into normal seedling given the number of evaluations as potentially unviable. 

Y Mean SD HPD interval 

LL UL 

0 0.9999 0.0001 0.9996  1.0000 

1 0.9607 0.0258 0.9095 0.9967 

2 0.0789 0.0412 0.0154 0.1567 

3 0.0002 0.0001 0.0000 0.0005 

 

Table 5. Posterior mean, standard deviation (SD), and lower (LL) and upper (UL) limits of HPD regions at 95% credibility for the 

expected number of normal seedlings in each of the image classifications as potentially unviable. 

Y Mean SD HPD interval 

LL UL 

0 302.9615 0.0389 302.8895 302.9996 

1 28.8202 0.7737 27.2856 29.9001 

2 1.0255 0.5351 0.2006 2.0365 

3 0.0123 0.0077 0.0018 0.0274 

 

For comparison, estimates are presented for λ, p1 and p2 obtained by the method of relative frequencies, 

usually used in these circumstances (Achcar & Ruffino Netto, 2003; Rocha et al., 2013). The parameter 

estimates were: λ = 0.8325, p1 = 0.03102, and p2 = 0.9305. 

From the relative frequency method, the probability of obtaining normal seedlings, conditional on the 

realized value of the random variable, it is found by the solution of equation (4). In addition, from the data 

presented in Table 1 and estimates obtained by the method of relative frequency, calculating the expected 

number of normal seedlings is possible. These results are shown in Table 6. 

Table 6. Frequency distribution of the evaluation of 400 Brachiaria seed images by three evaluators, and conditional probabilities and 

expected number of normal seedlings using the relative frequency method. 

Number of classifications as potentially 

unviable (Y) 

Number of seed images (fi) P(N|Y=y) E(Ni) = P(N|Y=y)(fi) 

0 303 0.9999 302.9776 

1 30 0.9699 29.0982 

2 13 0.0716 0.9305 

3 54 0.0002 0.0099 

 

It is possible to observe that the Bayesian point solutions are very close to those obtained through the 

method of relative frequency. Both methods provided good estimates, since the expected number of normal 

seedlings as a function of Y = 0 was approximately 303, equal to the observed number of images classified by 

the three evaluators as potentially viable. In addition, when the random variable takes the value Y = 3, the 

expected number of normal seedlings is very small (0.0099), which is in accordance with the probability of 

this event occurring (0.0002). 

In the germination test of 400 seeds, 240 developed into normal seedlings, 80 did not germinate, and the 

others developed into abnormal seedlings. The remaining seeds were subjected to the tetrazolium test, and 

only seven were identified as viable. Of the 54 seeds classified as potentially unviable by the three evaluators, 

none germinated and were considered unviable in the tetrazolium test. It was also observed that most of the 

seeds classified as potentially viable (Y = 0) developed into normal seedlings. 

Discussion 

The germination test was completely available for 21 days, which is a long time to decide on a production 

system (Gaspar-Oliveira, Martins, Nakagawa, & Cavariani, 2008). On the other hand, obtaining radiographic 

images, classifying the viability of the seeds, and the statistical analysis based on the mixture model took up 

less time. In this sense, a X-ray test for Brachiaria brizantha cv. Marandu is a supporting procedure, especially 

because it is already indicated by the RAS. In addition, the results highlight the advantages of using 
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noninvasive optical technologies that evaluate the germination of the same seeds submitted to X-ray tests, 

among others, since this method is nondestructive. However, the X-ray test does not replace the germination 

test, which defines the potential of a seed lot to produce normal seedlings under favorable conditions. 

Of the total seeds that were classified as potentially viable (Y = 0) by the three evaluators, 222 developed 

into normal seedlings, corresponding to 73.27%, which is statistically lower than estimated by the Bayesian 

model, being outside the region of credibility for the conditional probability P(N|Y = 0) (Table 5). It is 

necessary to emphasize that not all seeds classified as viable will develop into normal seedlings. This 

highlights the importance of performing the germination test. 

In the evaluated lot, 60% germinated, which is the minimum for the commercialization of B. brizantha 

(Brasil, 2008). A batch of seeds with low purity was used with the intention that different types of 

classifications (filled, partially filled, deformed, and empty) would occur, especially to allow evaluators to use 

the knowledge they obtained in the previous training. Furthermore, it was used for the method to be applied 

in a more illustrative way. 

Of the seeds classified as potentially unviable by the three evaluators, none germinated and were also 

considered unviable by the results of the tetrazolium test. This indicates an efficient association between 

morphological attributes and the non-viability of germination. This result is compatible with the model 

estimate. 

The method applied in this work was also used by Rocha et al. (2013) to analyze the viability of castor 

seeds that were either unprepared or pretreated with chloroform, a gaseous contrast substance. However, 

they did not observe any significant differences in the estimates. The problem with using pretreatment 

is that seeds subjected to contrasts, in order to obtain a better resolution in X-ray images, generally lose 

their germination capacity, making a posteriori analysis with the same seed unviable (Gordon, Gosling, 

& Wang, 1991). 

As noted, Bayesian point solutions and those obtained by the method of relative frequency showed very 

close values. However, incorporating uncertainty about these estimates is difficult in the frequentist context. 

The Bayesian method, on the other hand, offers flexibility in the inferential process and allows the estimation 

of parameters with associated levels of credibility. In addition, from a Bayesian perspective, it is possible to 

take advantage of previous knowledge to obtain more reliable combined estimates through meta-analyses, as 

well as to associate the researcher's experience by assigning informative prioris, incorporating information 

from experiments prior to the analysis (Perez-Elizalde, Jarquin, & Crossa, 2011; Bodnar, Muhumuza, & 

Possolo, 2020). 

Mixture distribution models have stood out in the modeling of phenomena whose population is composed 

of different subpopulations, similar to the problem addressed here. The Bayesian method with MCMC 

sampling offers many advantages in relation to other estimation procedures, such as a greater guarantee of 

convergence and the possibility of incorporating uncertainty through the estimated a posteriori distributions 

(Diebolt & Robert, 1994; Bilancia & Pollice, 1999; Stephens, 2000). In addition, when a posteriori distributions 

for unknown parameters are available, Bayesian methods provide valid inference without counting the 

assumption of asymptotic normality. This represents an advantage since the theory of the asymptotic 

maximum likelihood estimate (MLE) can be applied only to a large number of observations (McNeish, 2016). 

Conclusion 

The proposed classifications based on radiographic image evaluations allowed the association of seed 

morphological characteristics with viability, as well as the analysis of germination that was performed later. 

In this sense, associations of morphological attributes with non-germination were more conclusive. The 

Bayesian methodology used was efficient, thus allowing important information related to seed quality to be 

accessed through posterior probabilities and other amounts of interest with levels of uncertainty 

incorporated. In addition, the mixture model made it possible to properly associate seed probabilities in 

originating normal (or abnormal) seedlings with morphological characteristics. 
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