Consequences of the Magnetic Field, Sonic and Radiofrequency waves and Intense Pulsed Light on the Labeling of Blood Constituents with Technetium-99m

Patricia Froes Meyer¹, Sebastião David Santos-Filho¹,², Oscar Ariel Ronzio³, Ludmila Bonelli⁴, Adenison de Souza da Fonseca²*, Iris do Ceu Clara Costa¹, José Brandão Neto¹, Aldo da Cunha Medeiros¹ and Mario Bernardo-Filho²,⁵

¹Programa de Pós-Graduação em Ciências da Saúde; Centro de Ciências da Saúde; Universidade Federal do Rio Grande do Norte; Av. General Gustavo Cordeiro de Farias, s/n; 59010-180; Natal - RN - Brasil. ²Laboratório de Radiofarmácia Experimental; Departamento de Biofísica e Biometria; Instituto de Biologia Roberto Alcantara Gomes; Universidade do Estado do Rio de Janeiro; Av. 28 de setembro, 87; 20551-030; adenilso@uerj.br; Rio de Janeiro - RJ - Brasil. ³Universidad de Buenos Aires; Ciudad Autónoma de Buenos Aires - Argentina. ⁴Universidade Salgado de Oliveira; Belo Horizonte - MG - Brasil. ⁵Coordenadoria de Pesquisa; Instituto Nacional do Câncer; Praça Cruz Vermelha, 23; 20230-130; Rio de Janeiro - RJ - Brasil

ABSTRACT

Sources of magnetic field, radiofrequency and audible sonic waves and pulsed light have been used in physiotherapy to treat different disorders. In nuclear medicine, blood constituents(BI-Co) are labeled with technetium-99m (99mTc) are used. This study evaluated the consequences of magnetic field, radiofrequency and audible sonic waves and intense pulsed light sources on the labeling of BI-Co with 99mTc. Blood from Wistar rats was exposed to the cited sources. The labeling of BI-Co with 99mTc was performed. Blood not exposed to the physical agents was used (controls). Data showed that the exposure to the different studied sources did not alter significantly ($p>0.05$) the labeling of BI-Co. Although the results were obtained with animals, the data suggest that no alteration on examinations performed with BI-Co labeled with 99mTc after exposition to the cited agents. The biological consequences associated with these agents would be not capable to interfere with some properties of the BI-Co.

Key words: Blood constituents; magnetic field, sonic and radiofrequency waves, technetium-99m

INTRODUCTION

In physiotherapy some devices have been used to treat different disorders or to esthetical propose (Chang et al., 2007, Heinrich, 2007). These devices emit sonic and radiofrequency waves while others are capable to generate magnetic fields (Johns et al., 2002; Heinrich, 2007). It has described positive effects of sonic waves (bioressonance) on cicatrization process in human beings increasing the collagen synthesis (Capponi and Ronzio, 2006). The use of radiofrequency waves is based on heating of tissue irradiated beyond to 50 °C where cell death is induced by protein coagulation and they could be used to treat tumors (Pearce and Thomsen, 1995). Intense pulsed light sources have been used to treat abnormal cicatrices (Perez Rivera et al., 2002). In some reports beneficial effects of magnetic fields on bone metabolism and accelerate hydroxiapatite

* Author for correspondence
osteointegration suggesting osteogenesis stimulation have been described (Giordano et al., 2001).
Radionuclides have been used in investigations (clinical and basic sciences) (Saha, 2004, Joseph et al., 2006). Technetium-99m (99mTc) has been the most utilized radionuclide to label cells or molecules used as radiobiocomplexes (Bernardo-Filho et al., 2005) in the single photon emission computed tomography (SPECT) (Saha, 2004). This radionuclide has also been used in basic research (Pettersson et al., 2005; Fonseca et al., 2007).
Blood constituents labeled with 99mTc are used in nuclear medicine (Wong et al., 2004; Harel et al., 2005; Olds et al., 2005) for measurement of red cell volume detection, recognition of gastrointestinal bleeding, identification of hemangiomas, gated blood pool study and other purposes (Saha, 2004). This labeled process depends on an optimal stannous chloride concentration and can be performed using either in vivo or in vitro methods, or by a combination of both (Saha, 2004). In the red blood cells, the transport of the 99mTc-pertechnetate ion by the band-3 system (Callahan and Rabito, 1990) and the stannous ion by the calcium channels (Gutfilen et al., 1992) to the interior of the cells have been suggested.
An experimental model based on the labeling of blood constituents with 99mTc has been used to assess some properties of synthetic and natural (Abreu et al., 2006; Fonseca et al., 2007). Moreover, no report has described the effects of physical agents used in physiotherapy on the radiolabeling of blood constituents. Thus, the aim of this work was to evaluate the effect of magnetic field, sonic and radiofrequency waves and intense pulsed light on the labeling of blood constituents with 99mTc.

MATERIALS AND METHODS

Animals
Adult male Wistar rats (3-4 months, 250-300g) were maintained in a controlled environment. The animals had free access to water and food and ambient temperature was kept at 25 ± 2°C. Experiments were conducted in accordance with the Institutional Committee of Animal Care (Comissão de Ética para o Cuidado e Uso de Animais Experimentais, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro) with the protocol number CEA/134/2006.

Exposition of blood samples to physical agents
Heparinized blood (500µl, n=8 for each agent) was withdrawn from Wistar rats (n=8) and exposed to magnetic field (50 gauss, 30 minutes to both poles), sonic waves (3 kHz, 20 minutes), radiofrequency waves (550 kHz, 5 minutes, Vip Eletrônica, Brazil) and intense pulsed light (2 pulses, pulse time 0.01 s, 3-7 J/cm2 to each pulse, wavelength 400-1200 nm, Radiance®, Israel). As control, blood samples no exposed to the physical agents.

Radiolabeling of blood constituents
The experiments were carried following the protocol published elsewhere (Bernardo-Filho et al., 1983). Briefly, after exposition to physical agents, 500µl of freshly prepared solution of stannous chloride (1.2 µg/ml) was added and the incubation continued for further 1 hour. After this period of time, 100µl 99mTc (3.7MBq) as sodium pertechnetate (Na99mTcO$_4$), recently milked from a 99Mo/99mTc generator (Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, São Paulo, Brazil) were added and the incubation continued for another 10 minutes. These samples were centrifuged in a clinical centrifuge (1500rpm, 5 minutes) and aliquots (20µl) of plasma (P) and blood cells (BC) were isolated. Aliquots of 20µl of P and BC were also separated, precipitated with 1.0ml of 5% trichloroacetic acid and centrifuged (1500rpm, 5 minutes) to isolate soluble (SF) and insoluble fractions (IF). The radioactivity in P, BC, SF-P, IF-P, SF-BC and IF-BC were determined in a well counter (Packard, model C5002, Illinois, USA) and the percentage of radioactivity incorporated (%ATI) was calculated (Bernardo-Filho et al., 1983).

Statistical analysis
Data are reported as (means ± SD) of percentual of radioactivity (%ATI). The One way analysis of variance – ANOVA test was performed to verify possible statistical differences. After that, a rigorous statistical post test (Bonferroni) was chosen to identify the p value ($p<0.05$ as lesser significant level) and to compare each
RESULTS

The Fig. 1 shows the ATI% in blood cells and plasma compartments from whole blood exposed to physical agents. The data indicate that, at conditions used, the magnetic field (South and North poles), sonic and radiofrequency waves and intense pulsed light did not alter significantly \((p>0.05)\) the ATI% on the blood compartments.

Fig. 2 shows the ATI% in insoluble and soluble fractions isolated from plasma separated from blood samples exposed to physical agents. These data indicate that magnetic field (South and North poles), sonic and radiofrequency waves and intense pulsed light have not significantly \((p>0.05)\) modify the ATI% of fractions of plasma. The Fig. 3 shows the ATI% in insoluble and soluble fractions isolated from blood cells separated from blood samples exposed to physical agents. Similarly to the results obtained with plasma proteins, magnetic field (South and North poles), sonic and radiofrequency waves and intense pulsed light have not significantly \((p>0.05)\) modified the ATI% of fractions of blood cells.
DISCUSSION

Low frequencies pulsed electromagnetic fields are one of the most athermal common therapies used in the elderly patients by physicians (Heinrich, 2007). It has suggested that the exposition to magnetic field at 15Hz is effective to increases the bone mass (Mc Leod and Rubin, 1997) increasing the local levels of PGE$_2$ and TGF-b1 which decrease osteoclastic bone reabsorption (Lohmann et al., 2003). Other data have suggested no effect of these electromagnetic fields on collagen synthesis (Ahmadian et al., 2006). Although reports suggest an effect of electromagnetic fields on cell function, no modifications on the distribution of radioactivity in the cellular and plasma compartments was found (Fig. 1).

![Graph](image)

Figure 3 - Effect of exposition to physical agents on the fixation of radioactivity on soluble and insoluble fractions of blood cells. Blood from Wistar rats was exposed to the magnetic North (MNP) and South (MSP) poles, audible sonic (ASW) and radiofrequency (RF) waves and intense pulsed light (IPL). The radiolabeling procedure was performed; plasma and blood cells separated by centrifugation. Insoluble and soluble fractions of blood cells were obtained by precipitation and centrifugation, the radioactivity counted and the %ATT to each fraction calculated. () soluble fraction of blood cells and (□) insoluble fraction of blood cells

Authors have suggested that audible sonic waves could interact with proteins moving them to lymphatic system (Capponi and Ronzio, 2006). No modification on the radiolabeling of plasma and cellular proteins was induced by the source of audible sonic waves used in our experiments (Figures 2 and 3) indicating that the phenomenon reported by Capponi and Ronzio (2006) is not relevant to the studied labeled process. Thus, more studies are necessary to understand the potential applications of these mechanical waves in biomedical sciences as well their adverse effects.

Radiofrequency thermal therapy of tumors is based on heating of target which induces changes in dielectric properties and protein coagulation and fat melting (Pop et al., 2003). The energy absorbed from a radiofrequency source depends strongly on the tissue dielectric properties (Stroehbhn, 1983, Van de Kamer et al., 2001). As results, changes in dielectric properties during heating the tissue temperature distribution is affected and resulting thermal damage. Several numerical models for predicting the radiofrequency thermal damage in heart muscle and liver have been proposed, but they either incorporated only temperature-dependent changes in electrical conductivity (Labonte, 1994) or consider the conductivity to be constant (Haemmerich et al., 2001). However, no alterations on labeling of blood constituents with 99mTc were verified when blood samples were exposed to radiofrequency waves in the conditions used in this study. In consequence, the findings described by Stroehbhn, 1983, Labonte, 1994, Van de Kamer et al., 2001, Haemmerich et al., 2001 could be not relevant to the studied labeled process with 99mTc.

Intense pulsed light systems are high-intensity light sources, which emit polychromatic and noncoherent light in a broad wavelength spectrum (515-1200 nm) allowing a great variability in selecting individual esthetical treatment of skin (Raulin et al., 2003) as rejuvenation of the aging face (Mezzana and Valeriani, 2007) or skin diseases as erythrosis (Madonna Terracina et al.,
ACKNOWLEDGEMENTS

This research was supported by Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Universidade do Estado do Rio de Janeiro (UERJ).

REFERENCES

Received: August 21, 2007;
Revised: September 1, 2007;
Accepted: September 11, 2007.