Effect of Microalga *Spirulina platensis* (*Arthrospira platensis*) on Hippocampus Lipoperoxidation and Lipid Profile in Rats with Induced Hypercholesterolemia

Telma Elita Bertolin²*, Dayane Pilatti¹, Ana Cristina Vendrametto Varrone Giacomini¹, Caren Serra Bavaresco¹, Luciane Maria Colla² and Jorge Alberto Vieira Costa³

¹Instituto de Ciências Biológicas; Ciências Fisiológicas; Universidade de Passo Fundo; Passo Fundo - RS - Brasil.
²Laboratório de Fermentações; Centro de Pesquisa em Alimentação; Passo Fundo - RS - Brasil.
³Laboratório de Engenharia Bioquímica; Universidade Federal do Rio Grande; Rio Grande - RS - Brasil

ABSTRACT

Studies have been conducted on microalga *Spirulina platensis* (*Arthrospira platensis*) due to its therapeutic potential in several areas, including the capacity for preventing and decreasing the damages caused by hyperlipidemia and the antioxidant activity. The aim of the study was to evaluate the effect of microalga *Spirulina platensis* on hippocampus lipoperoxidation and lipid profile in rats with induced hypercholesterolemia during 60 days. The measurement of hippocampus lipoperoxidation did not demonstrate significant difference (p>0.05) when *Spirulina platensis* was added to hypercholesterolemic diet. The evaluation of lipid profile showed that the administration of the microalga in therapeutic and preventive ways led to a significant protective effect (p<0.05) from hypercholesterolemia.

Key words: *Spirulina*, *Arthrospira*, lipids, cholesterol, antioxidant

INTRODUCTION

The alteration of plasma cholesterol and triglycerides levels may result in dyslipidemias and lead to the occurrence of cardiovascular diseases, mainly atherosclerosis. The oxidation of LDL (low-density lipoprotein) is indicated as a cause of atherosclerosis. Factors capable of avoiding this oxidation and modifying the quantities of lipoproteins constitute a way of decreasing the formation of the atherosclerotic plaque (Peruguini et al., 2000). Epidemiological and clinical studies established an inverse relation between the intake of compounds with antioxidant effects and the incidence of chronic diseases, like the cardiovascular ones (Belay, 2002).

The microalga *Spirulina* (*Arthrospira*) has been studied extensively due to its therapeutic potential in several areas, including the capacity of preventing and decreasing the damages caused by hyperlipidemia and the antioxidant activity (Belay, 2002). *S. platensis* is a photoautotrophic filamentous cyanobacterium used mainly as food supplement (Henrikson, 1994) because it has proteins (55-70%), sugars (12-25%), essential fatty acids (18%), vitamins, and minerals in its chemical constitution (Sanchez et al., 2003).

Author for correspondence: telma@upf.br
contains carotenoid pigments, especially beta-
carotene and zeaxantine, besides phycoconanine
(Estrada et al., 2006) and phenolic compounds
(Colla et al., 2006), substances with well-known
antioxidant activity. The absence of phycotoxins is
an advantage of *Spirulina* when compared to other
cyanobacteria and studies on chronic and
subchronic toxicity did not reveal any toxic effect
related to its intake (Sanchez et al., 2003; Salazar
et al., 1998), as long as there was absence of
toxigenic cyanobacteria in its culture (Costa et al.,
2006).

Experiments conducted in different animal models
demonstrated that a supplementary diet with
Spirulina could promote a decrease in plasma
(Iwata et al., 1990; Hosoyamada et al., 1991) and hepatic
(De Rivera et al., 1993) total cholesterol, LDL, triglycerides, and phospholipids, besides
increasing HDL (high-density lipoprotein) (Hosoyamada et al., 1991). In humans, studies
have indicated a significant reduction in the total
cholesterol, LDL, VLDL (very low-density lipoprotein), and triglycerides, elevation in HDL
cholesterol (Ramamoorthy and Premakuri, 1996),
and reduction of atherogenic effect (Nakaya et al.,
1988). Nagaoka et al. (2005) identified the
mechanism how *S. platensis* induced
hypercholesterolemia and concluded that C-
phyccyanine protein derived from the
phycobiline pigment developed an essential role
on such microalgae’s capacity.

Miranda et al. (1998) attributed the antioxidant
effect from the *Spirulina* extract to beta carotene,
tocopherol and phenolic compounds present in the
composition of the microalgae. According to
Estrada et al. (2001), the phyccyanine protein
extracted from *S. platensis* has the capacity of
interacting with the reactive species to oxygen
generated during the oxidative process through the
sequestration of free radicals. The results from
several studies have indicated that the utilization of
Spirulina as a diet supplement constituted a
strategy for the prevention of health problems due
to the injuries produced by the free radicals
(Belay, 2002).

The present study aimed to evaluate the influence
of the administration of microalgae *S. platensis*
biomass on the hippocampus lipoperoxidation and
the serum lipid profile in rats with induced
hypercholesterolemia.

MATERIALS AND METHODS

Male Wistar rats (Ratus norvegicus) weighing
226.6±25.6 g were used. The experiments with lipid profile were accomplished with 40 rats
distributed in five experimental groups (n=8). Four
rats from each group were also used in the
experiments for evaluating the hippocampus lipoxidation. The animals were submitted to the
treatments during a 60-day period. Daily
individual diet was 20g and water ad libitum.
The treatments consisted in the administration of
four diets to the experimental groups: control diet
(stdard diet for rodents), hypercholesterolemic
diet (addition of 3.5 g of cholesterol for 1.000 g of
standard diet), diet with *Spirulina* (addition of 5.0
g of *S. platensis* biomass for 1,000 g of standard
nourishment), hypercholesterolemic diet with
Spirulina (addition of 5.0 g of *S. platensis*
bioass for 1.000 g of hypercholesterolemic diet). This
way, the mean daily intake of cholesterol and
Spirulina biomass, according to each group, was
70 g of cholesterol/day and 100 mg of
Spirulina/day, corresponding to 310 to 442 mg/kg
of body mass, respectively.

The groups named Control Diet (CD),
hypercholesterolemic Diet (HD), and
Hypercholesterolemic Diet with *Spirulina* (HD+S)
received the same diet (for each group) during the
whole period of the experiment. The
Hypercholesterolemic Diet and *Spirulina* Diet
(HD/S) received hypercholesterolemic diet
during the first 30 days of treatment, and then
changed to *Spirulina* diet, constituting the group in
which the microalgae’s therapeutical potential was
tested for hypercholesterolemia. The *Spirulina*
Diet and Hypercholesterolemic Diet group
(SD/HD) received diet with *Spirulina* during the
first 30 days and in the remaining treatment
period, changed to hypercholesterolemic diet,
representing the group where the microalgae’s
preventive effect was evaluated for
hypercholesterolemia.

The experimental groups and their respective
treatments are shown in Table 1.
Effect of Microalga *Spirulina platensis* (*Arthrospira platensis*) on Hippocampus Lipoperoxidation

Table 1 - Experimental groups and treatments.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Control Diet</td>
</tr>
<tr>
<td>HD</td>
<td>Hypercholesterolic Diet</td>
</tr>
<tr>
<td>HD+S</td>
<td>Hypercholesterolic Diet with Spirulina</td>
</tr>
<tr>
<td>HD/S</td>
<td>Hypercholesterolic Diet and Spirulina Diet</td>
</tr>
<tr>
<td>SD/H</td>
<td>Spirulina Diet and Hypercholesterolic Diet</td>
</tr>
</tbody>
</table>

In the beginning of treatment (time 0), after a 12-h, the animals were anaesthetized with ethylc ether for weighing and collecting the blood samples through ocular puncture. At the end of the treatment (60 days), the animals were decapitated by guillotine for obtaining the blood samples and removal of the hippocampus in those rats used for lipoperoxidation measurement. From the collected blood serum, the measurements of total cholesterol (TC), HDL, LDL, VLDL, and triglycerides (TG) were determined through the enzymatic method (Labtest Diagnostica). The samples from hippocampus were homogenized for the lipoperoxidase measurement through the TBARS technique (Thiobarbiturate Acid Reactive Substances) described by Esterbauer & Cheeseman (1990).

The results were presented as mean ± standard deviation and compared through the Variance Analysis and Tukey’s Test for comparing the means with a significance of 5%.

RESULTS AND DISCUSSION

The administration of *S. platensis* biomass to the rats did not influence the body weight. In all the animals, a significant increase (p<0.05) in the final weight (time 60) took place when compared to the beginning (time 0), but without any significant difference between the groups (Table 2). Similar result was obtained by Araujo et al. (2003), where the supplementary diet with *Spirulina* biomass also did not influence the animals’ food intake and body weight.

The lipoperoxidation measurement in the rats’ hippocampus did not differ significantly (p>0.05) between the groups, and there was only a trend to a decrease of the oxidative stress caused by the induction of hypercholesterolemia in the preventive and therapeutic treatments, represented by the SD/H and HD/S groups, respectively (Fig. 1). However, Rimbau et al. (1999), who used C-phycocyanine, protein derived from *Spirulina platensis*, for testing the antioxidant potential, demonstrated that metabolites from that protein had the ability to pass the blood-brain barrier, offering protective effect against oxidative stress on rats’ hippocampus. Miranda et al. (1998) also described an inhibition of lipoperoxidation by *Spirulina* in experiments *in vitro* with brain tissue and *in vivo* with rat plasma.

Table 2 - Variation of rats’ body weight during the experimental period.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Initial weight (g)</th>
<th>Final weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>236.8 ± 12.4</td>
<td>334.0 ± 22.4</td>
</tr>
<tr>
<td>HD</td>
<td>249.9 ± 6.3</td>
<td>330.9 ± 9.8</td>
</tr>
<tr>
<td>HD+S</td>
<td>237.0 ± 22.1</td>
<td>326.8 ± 24.0</td>
</tr>
<tr>
<td>HD/S</td>
<td>212.3 ± 21.1</td>
<td>308.8 ± 22.3</td>
</tr>
<tr>
<td>SD/H</td>
<td>197.3 ± 21.5</td>
<td>300.4 ± 15.7</td>
</tr>
</tbody>
</table>

* Different letters represent significant difference (p=0.05), n=8.
CD: Control diet; HD: Hypercholesterolic diet; HD+S: Hypercholesterolic diet with *Spirulina*; HD/S: Hypercholesterolic diet and *Spirulina* diet; SD/H: *Spirulina* diet and hypercholesterolemic diet.
Figure 1 - Lipoperoxidation measurement in hippocampus. (p<0.05); n=4. CD: Control diet; HD: Hypercholesterolemic diet; HD+S: Hypercholesterolemic diet with *Spirulina*; HD/S: Hypercholesterolemic diet and *Spirulina* diet; SD/H: *Spirulina* diet and hypercholesterolemic diet.

Regarding the lipid profile, analysis of variance demonstrated a significant difference in the results of TC and TAG obtained from the different treatments (p<0.05) and in the experiment duration (time) (p<0.05). The interaction between the treatment and duration was significant (p<0.05), and it should be considered instead of the individual factors (Table 3).

Table 3 - Significance levels (p) for Variance Analysis of the experiment duration and treatment on the total cholesterol (TC), HDL, LDL+VLDL, and triglycerides (TAG).

<table>
<thead>
<tr>
<th></th>
<th>TC</th>
<th>HDL</th>
<th>LDL+VLDL</th>
<th>TAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Treatment</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td></td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Time</td>
<td>0.3034</td>
<td>< 0.0001</td>
<td>0.0004</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Treatment x Time</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

Table 4 presents the comparison of the means from the variables time and treatment using Tukey’s Test with 5% of significance for the responses TC, HDL, LDL+VLDL, and TAG. Figures 2a and 2b represent the interaction graph of the means between the factors treatment and time for TC and TAG levels.

CD (control diet) group did not show significant difference (p>0.05) in the TC (Fig. 2a), LDL+VLDL, and TAG levels (Fig.2b), while the HDL levels decreased significantly (p<0.05) during the treatment.

In the HD and HD+S groups, the TC (Fig. 2a), LDL+VLDL, and TAG levels enhanced significantly (p<0.05). On the other hand, HDL did not show significant alteration (p>0.05) during the treatment. These results demonstrated that the cholesterol addition to the diet induced hypercholesterolemia in the animals. This effect was also observed in the HD+S group, for which the hypercholesterolemic diet was supplemented with *S. platensis*, suggesting that the microalga intake associated with a cholesterol-rich diet did not modify the lipid levels.
Table 4 - Comparison of means between the variables time and treatment through the Tukey’s Test with 5% of significance for the total cholesterol (TC), HDL, LDL+VLDL and triglycerides (TAG).

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Time (days)</th>
<th>CD</th>
<th>HD</th>
<th>HD+S</th>
<th>HD/S</th>
<th>SD/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC (mg/dL)*</td>
<td>0</td>
<td>79.5 ± 8.4 bc</td>
<td>63.8 ± 6.8 ab</td>
<td>79.4 ± 9.5 bc</td>
<td>86.4 ± 10.2 cd</td>
<td>65.2 ± 7.2 ab</td>
</tr>
<tr>
<td>HD</td>
<td>0</td>
<td>31.0 ± 6.4 bc</td>
<td>36.2 ± 2.9 bc</td>
<td>33.2 ± 4.6 bc</td>
<td>39.0 ± 7.0 c</td>
<td>28.1 ± 7.5 b</td>
</tr>
<tr>
<td>LDL+VLDL (mg/dL)*</td>
<td>0</td>
<td>12.3 ± 5.1 a</td>
<td>29.0 ± 4.4 b</td>
<td>32.2 ± 6.9 bc</td>
<td>32.3 ± 3.3 bc</td>
<td>28.4 ± 6.8 h</td>
</tr>
<tr>
<td>TAG (mg/dL)*</td>
<td>0</td>
<td>113.6 ± 13.8 ab</td>
<td>70.8 ± 21.5 a</td>
<td>113.9 ± 26.8 ab</td>
<td>89.9 ± 26.5 ab</td>
<td>85.9 ± 16.8 ab</td>
</tr>
</tbody>
</table>

Different letters represent significant difference (p=0.05), n=8.

CD: Control diet; HD: Hypercholesterolemic diet; HD+S: Hypercholesterolemic diet with *Spirulina*; HD/S: Hypercholesterolemic diet and *Spirulina* diet; SD/H: *Spirulina* diet and hypercholesterolemic diet.

Figure 2 - (a) Total cholesterol and (b) triglycerides in times 0 and 60. (p<0.05), n=8.

CD: Control diet; HD: Hypercholesterolemic diet; HD+S: Hypercholesterolemic diet with *Spirulina*; HD/S: Hypercholesterolemic diet and *Spirulina* diet; SD/H: *Spirulina* diet and hypercholesterolemic diet.

The administration of *S. platensis* biomass in a therapeutic way to the HD/S group, which changed to *Spirulina* diet after hypercholesterolemia induction, led to a significant reduction (p<0.05) in the final TC levels (Fig. 2a) when compared to the initial ones. *Spirulina* diet also maintained the LDL+VLDL and TAG levels (Fig. 2b), preventing the enhancement in these parameters observed in HD group. HDL levels remained statistically unchanged (p>0.05). In a study conducted by...
Colla et al. (2002), *S. platensis* addition to the diet of hypercholesterolemic-induced rabbits caused a decrease in the total cholesterol and triglycerides levels and an increase in the HDL cholesterol. In the studies performed by Torres-Duran et al. (1999) and Huang et al. (2005), rats were submitted to the induction of fatty liver by carbon tetrachloride and of diabetes by alloxane, respectively. The triglycerides and total cholesterol levels were significantly decreased in the animals that received a diet added with *Spirulina*. *Spirulina* supplementation to patients with type II diabetes mellitus (Parikh et al., 2001) and hyperlipidemic nephrotic syndrome (Samuels et al., 2002) improved the patients’ lipid profile through a reduction in the total cholesterol, LDL and triglycerides levels.

The 3D/H group (*Spirulina* diet and hypercholesterolemic diet), in which the preventive effect of the microalga *Spirulina* was tested against the development of hypercholesterolemia, all parameters remained unchanged (p>0.05) at the end of the treatment, indicating a preventive potential for the elevation of TC (Fig. 2a), LDL+VLDL, and TAG levels (Fig. 2b) observed in HD group, besides the prevention of the decrease in HDL observed in the CD group. This preventive effect of *Spirulina* also was observed by Blé-Castillo et al. (2002) and Rodríguez-Hernández et al. (2001) in the induction of fatty liver and on hepatic and serum lipid levels.

In a study about the hypocholesterolemic action of *Spirulina platensis* in rats, Nagaoka et al. (2005) demonstrated that the *S. platensis*-derived phycocyanine protein influence the serum cholesterol concentration, suggesting a hypocholesterolemic activity of the microalga in animals.

One of the first studies about the reduction in serum cholesterol due to the administration of microalga *Spirulina* was conducted by Devi and Venkataraman in 1983 and, since then, several works have confirmed such action of *Spirulina* in studies involving animals and humans (Belay, 2002).

Concerning the lipid profile, the therapeutic and preventive groups exhibited a decrease in TC levels from 86.4 ± 10.2 mg/dl to 65.1 ± 5.4 mg/dl, and from 65.2 ± 7.2 mg/dl to 56.0 ± 8.4 mg/dl, respectively, and in the LDL+VLDL levels from 45.6 ± 16.0 mg/dl to 33.3 ± 5.5 mg/dl, and from 36.3 ± 8.4 mg/dl to 26.9 ± 5.5 mg/dl, respectively. There was also maintenance of TAG and HDL levels. These results pointed to a potential usefulness for microalga *S. platensis* in the treatment and prevention of hypercholesterolemia.

RESUMO

A microalga *Spirulina platensis* (*Arthospira platensis*) vem sendo fonte de pesquisas devido a evidências de seu potencial terapêutico em diversas áreas, dentre elas a capacidade de prevenção e diminuição dos danos causados por dislipidemias e sua atividade antioxidante. Objetivou-se avaliar o efeito da microalga *Spirulina platensis* sobre a lipoperoxidação no hipocampo e perfil lipídico sérico em ratos com hipercolesterolemia induzida durante 60 dias. A dosagem da lipoperoxidação no hipocampo não demonstrou diferença significativa (p>0,05) quando *Spirulina platensis* foi adicionada na dieta hipercolesterolêmica. A avaliação do perfil lipídico demonstrou que a administração da microalga de forma terapêutica e preventiva demonstrou efeito significativo (p<0,05) na proteção do desenvolvimento de hipercolesterolemia.

REFERENCES

Blé-Castillo, J. L.; Rodríguez-Hernández, A.; Miranda-Zamora, R.; Juarez-Oropeza, M. A.; Díaz-Zagoya J. C. (2002), *Arthospira maxima* prevents the acute fatty liver induced by the administration of simvastatin, ethanol and a hypercholesterolemic diet to mice. *Life Sciences*, 70, 2665-2673

Colla, L. M.; Reinehr, C. O.; Reichert, C.; Costa, J. A. V. (2007), Production of biomass and nutraceutical compounds by *Spirulina platensis* under different temperature and nitrogen regimes. *Bioresource Technology*, 98 (7), 1489-1493
Effect of Microalga *Spirulina platensis* (*Arthrospira platensis*) on Hippocampus Lipoperoxidation

Estrada, J. E. P.; Bescós, P. B.; Fresno, A. M. V. (2001), Antioxidant activity of different fractions of *Spirulina platensis* protean extract. *Il Farmaco*, 56, 497-500

Rimbau, V.; Camins, A.; Romay, C.; González, R.; Pallás, M. (1999), Protective effects of C-phycocyanin against kainic acid-induced neuronal damage in rat hippocampus. *Neuroscience Letters*, 276, 75-78

Received: May 15, 2007;
Revised: October 23, 2007;
Accepted: November 10, 2008.