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Abstract: Cold stress is one of the limiting factors of plant production that plants use 
different mechanisms for cold tolerance. CBF genes play critical role to regulate the cold 
responsive genes. To better understand of CBF gene functions, the tomato-CBFs and 
Arabidopsis-CBFs were evaluated using bioinformatics tools, and finally the expression 
patterns of SlCBF1 gene were analyzed under 10 and 4˚C in two contrasting tomato species 
(Solanum lycopersicum and S. habrochaites). The different cis regulatory elements were 
observed in promoter region of SlCBF1 and AtCBF1 genes, and ICE1, COR and HOS1 
proteins exhibited high interaction with CBFs. The results of Real time PCR of SlCBF1 
exhibited that under 10 and 4 ˚C, SlCBF1 was down regulated in cold sensitive tomato 
genotype while it was slightly up-regulated in cold tolerant genotype at 4 ˚C. The results 
showed that the SlCBF1 and AtCBF1 genes have differential expression in cold stress. 
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INTRODUCTION 

Environmental stresses such as low temperature (<18˚C), high temperature, drought 
and high salinity have negative effects on plant growth, development and performance [1, 2]. 
To adapt to unfavorable conditions such as cold stress, plants use the different mechanisms 
including molecular and physiological responses [3]. Transcription factors (TFs) as a 
molecular response have key role to regulate the expression patterns of target genes under 

HIGHLIGHTS 

 

• This study focused on the investigation CBF genes in Arabidopsis and tomato. 

 

• The different cis-regulatory elements were observed in promoter sites. 

 

• SlCBF1 and AtCBF1 genes showed differential expression under cold stress. 

 

• AtCBF1 is more induced than SlCBF1 under cold stress. 
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biotic and abiotic stresses [4]. The AP2/ERF superfamily is a large TF family that is involved 
in the response to environmental stresses [5]. C-repeat binding factors (CBFs), also known 
as DREB, are members of AP2/ERF superfamily that play a fundamental role in regulation of 
cold-responsive genes and cold acclimation [6, 7]. During cold stress in Arabidopsis, 
CBF1/DREB1B, CBF3/DREB1A, and CBF2/DREB1C are induced, and they bind the 
regulatory CRT/DRE element with conserved core sequence (5’-CCGAC-3’) of promoter 
region in cold-regulated genes [7, 8]. Previous studies illustrated that CBFs are induced 
under low temperature in barley [9], rice [10], Arabidopsis [11, 12] and wheat [13].  

Tomato (Solanum lycopersicum) is one of the largest angiosperm genera and includes 
annual and perennial plants that most genotypes of tomato are sensitive to low temperature 
[14]. Three CBFs (SlCBF1, 2 and 3) were identified in tomato that SlCBF1 is induced in low 
temperature [15]. Recently, Li et al. generated slcbf1 mutant lines in tomato by the 
CRISPR/Cas9 system that the abscisic acid, methyl jasmonate, zeatin riboside and protein 
contents were decreased in slcbf1 mutants and wild type showed more cold resistance than 
mutant lines [16]. However, the overexpression of SlCBF1in tomato could not increase the 
cold tolerance, but SlCBF1 increased the cold stress tolerance in Arabidopsis transgenic 
plants [15]. It seems that the function of SlCBF1 in tomato is different from other plant 
species such as Arabidopsis, and its role is still unknown under cold stress. To understand 
the role of SlCBF1 in tomato during low temperature stresses, the expression patterns of 
SlCBF1 in tomato genotypes (cold sensitive and cold tolerant genotypes) were analyzed at 
10˚C and 4 ˚C and also the Arabidopsis-CBFs and Tomato-CBFs were compared using 
bioinformatics tools. The results of this research provide the new information of 
SlCBF1-regulatory mechanisms during the cold stresses. 

MATERIAL AND METHODS  

Sequence analysis 

The protein sequences of CBF in tomato, Arabidopsis, wheat, barley, rice and potato 

were retrieved using NCBI database [17]. The some physicochemical characteristics of 

studied proteins such as molecular weight (MW) and isoelectric point (pI) were predicted 

using ProtParam tool [18], and the subcellular location of CBF proteins was predicted by 

Plant-mPLoc tool [19]. The STRING database [20] was used to predict the protein-protein 

interaction of tomato-CBFs and Arabidopsis-CBFs. 

Phylogenetic analysis 

The amino acid sequence of CBF proteins in tomato, Arabidopsis, potato and some 

important monocots such as wheat, barley and rice was used to construct the phylogenetic 

analysis using neighbor-joining method of MEGA7 software [21].  

Cis-acting regulatory elements analysis 

To identify the cis-regulatory elements in promoter regions, the 1000bp of upstream the 

start codon of SlCBF1 and AtCBF1 were analyzed using Plant CARE [22].  

Microarray analysis  

The published data of genes expression profile of Arabidopsis were used to consider 

the expression patterns of AtCBF1-3 genes under abiotic stresses. The microarray data of 

AtCBF1-3 genes under cold, drought and salt stresses were obtained using the affymetrix 

Arabidopsis ATH1 genome array (10615 samples) from Genevestigator database [23]. 
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Plant materials and growth conditions  

Seeds of Solanum lycopersicum cv. Moneymaker (as cold sensitive) and S. 

habrochaites, LA1777 (as cold tolerant) were sown in 18 soil plates at 23±1⁰C under 14h 

photoperiod duration. After six weeks, the 12 plates of tomato seedlings were transferred to 

two different growth chambers at set-point temperatures of 10±1°C and 4±1°C and 6 plates 

remained at 23±1⁰C. After three days, the whole shoots of each plate were collected and 

stored in liquid nitrogen and transferred to -80⁰C. 

RNA extraction and cDNA preparation 

The leaves from three individual tomato seedlings were powdered in liquid nitrogen and 

then the total RNA was extracted by RNX TM -Plus (Sinaclon). The quantity and quality of 

extracted RNA were determined using a Nano Photometer (Implen N50). Reverse 

transcription was carried out using 1 µg total RNA treated with RNase-free DNase I (Thermo 

Scientific) and reverse transcriptase (Roche, Germany) according to instructions of 

manufacture. The primers for SlCBF1 (F: 5´- CCTGCTTCCTCCAACTCTAAA -3´ and R: 5´- 

CTCATCCACGAAGTCACTACTC -3´) and EF-1-α (F: 5´- 

GGAACTTGAGAAGGAGCCTAAG -3´ and R: 5´- CAACACCAACAGCAACAGTCT -3´) as 

reference gene were designed and evaluated using primer3 plus [24]. 

Real time PCR 

The real time PCR was run with Applied Biosystems StepOne TM using RealQ Plus 2x 

Master Mix Green high ROX TM (Ampliqon) according to instructions of manufacture. The 

conditions of real time PCR were combined: 95⁰C for 10 min, followed by 35 cycles at 95⁰C 

for 15s and 61⁰C for 20s. The melting curve for each sample was carried out after 35 cycles. 

The relative expression patterns of SlCBF1 were evaluated using the 2-ΔΔCt method [25]. 

RESULTS and DISCUSSION 

Physicochemical properties of CBF proteins 

The molecular weight (MW) and isoelectric point (pI) of CBF proteins in tomato, 

Arabidopsis, wheat, barley, rice and potato were predicted as shown in table 1. The results 

revealed that the length of studied CBFs ranged from 205 (tomato-CBF3) to 257aa 

(potato-CBF2). The pI value of CBFs in dicots plants (tomato, Arabidopsis and potato) was 

less than monocots plants (wheat, barley and rice) as the rice-CBF showed the highest 

value (10.18) and potato-CBF2 had the lowest value (4.54). The prediction of 

CBFs-subcellular location exhibited that the cellular location of Arabidopsis-CBF1-3 was in 

nucleus while the subcellular location of tomato-CBF1 was predicted in cytoplasm and 

nucleus.  

Phylogenetic analysis of CBFs 

To understand the phylogenetic relationship between CBFs in monocots and dicots 

plants, the phylogenetic tree was constructed based on multiple alignments of amino acid 

sequences of CBFs in tomato, Arabidopsis, wheat, barley, rice and potato (Fig. 1). 

According to the evolution analysis, the CBFs of dicots plants were visibility separated from 

monocots. The CBF proteins from tomato showed closer relationships to CBF3 protein from 

potato. Also, CBF1 and CBF2 in tomato exhibited close similarity as well as CBF1 and CBF2 

proteins from Arabidopsis.  
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Table 1- Properties of CBF proteins in Arabidopsis, tomato, potato, wheat, barley and rice 

Gene accession 

number 

Gene 

name 

Organism Length 

(aa) 

MW 

(KDa) 

pl Predicted 

location(s) 

AAS77820 CBF1 Solanum lycopersicum 210 23.40 5.23 Cyto*. Nucleus. 

AAS77821 CBF2 Solanum lycopersicum 220 24.60 5.33 Nucleus. 

AAS77819 CBF3 Solanum lycopersicum 205 23.06 5.48 Cyto. Nucleus. 

AAV80413 CBF1 Arabidopsis thaliana 213 23.82 5.08 Nucleus 

AAV80415 CBF2 Arabidopsis thaliana 216 24.27 5.00 Nucleus 

AAV80414 CBF3 Arabidopsis thaliana 216 24.25 5.08 Nucleus 

NP_001274856 CBF2 Solanum tuberosum 257 28.45 4.54 Cyto. Nucleus 

AAL37944 CBF Triticum aestivum 212 23.34 7.78 Cyto. Nucleus 

AKE47413 CBF2 Triticum aestivum 225 25.14 5.11 Cyto. Nucleus 

AAG59618 CBF Hordeum vulgare 249 26.33 5.33 Cyto. Nucleus 

AAG59619 CBF Oryza sativa 253 27.67 10.18 Cyto. 

Cyto: cytoplasm 

 

Figure 1- Phylogenetic analysis of CBF proteins using neighbor-joining method  

Protein-protein interactions in CBFs 

The interaction network of CBF genes in tomato and Arabidopsis revealed that 

Solyc03g082820 (uncharacterized protein) just had an interaction with CBF1-3 from tomato 

while Arabidopsis-CBF1-3 exhibited a high interaction with each other (Fig. 2). Arabidopsis 

is model plant that its molecular aspects have been extensively investigated more than 

tomato. CBF1 from tomato had an interaction with THM18 (also known as SlMYB14) which 

is a member of R2R3MYB gene family that involves in plant response to environmental 

stresses. The some key cold-response proteins such as ICE1, COR15A and HOS1 

exhibited high interaction with Arabidopsis-CBF1-3. ICE1 is an inducer of CBF genes in 

Arabidopsis that it binds to MYB elements of CBFs promoter under cold stress [26]. ICE1 is 

upstream of cold responsive pathway and regulates the key cold regulated genes such 

COR15A and CBF genes [26, 27]. HOS1 was observed as a member of CBFs interaction 
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network that interacts with ICE1. HOS1 is a negative regulator of cold responses and it 

involve in ubiquitination and degradation of ICE1 as an E3 ligase [28].  

 

 

Figure 2- Proteins interaction network of CBF proteins in tomato and Arabidopsis 

Promoter analysis 

Cis-regulatory elements, such as promoters and enhancers, control physiology and 

development by regulating gene expression [2, 29]. The different cis-regulatory elements 

were found in upstream sequences (1000bp) of SlCBF1and AtCBF1 that they involve in 

biotic and abiotic stresses (Fig. 3). The GARE motif (gibberellin-responsive element), 

CGTCA-motif (cis-acting regulatory element involved in the MeJA-responsiveness) and 

TC-rich repeats (cis-acting element involved in defense and stress responsiveness) were 

distributed within the regulatory region of SlCBF1 and AtCBF1 genes. Some key regulatory 

elements such as HSE (cis-acting element involved in heat stress responsiveness) and 

MYS (MYB binding site involved in drought-inducibility) were observed in upstream of 

SlCBF1. The ABRE and AuxRR which involve in abscisic acid (ABA) and auxin hormones 

signaling respectively were found in promoter region of AtCBF1. ABRE is an ABA response 

element that plays critical role in abiotic stresses [30]. However CBF1 is expressed by ABA 

independent pathway [26]. The identification of cis-regulatory DNA elements responsive to 

stress is important to determine gene regulatory mechanisms under various stresses [2, 31]. 

The present result revealed that SlCBF1 and AtCBF1 have different regulatory elements in 

their promoter region which caused different-induction patterns.   

 

Figure 3- Distribution of cis-acting regulatory elements in the 5׳ regulatory sequences of CBF1in 

tomato and Arabidopsis 
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Expression patterns of SlCBF1 gene in tomato genotypes 

To more understand the role of SlCBF1 under cold stress, the expression patterns of 

SlCBF1 gene were evaluated at 10 and 4˚C in sensitive and tolerant tomato genotypes (Fig. 

4). The SlCBF1 gene exhibited the different expression patterns in tomato genotypes 

whereas SlCBF1 was down regulated in Moneymaker (as cold sensitive) at 10 and 4˚C after 

3 days but it was up-regulated at 4˚C in LA1777 (as cold tolerant genotypes). CBF1 is key 

transcription factor that involve in plant response to low temperature, and drought stress [3]. 

Zhang et al. and Liu et al. also reported that SlCBF1 was induced under cold stress (4˚C) [15, 

32]. It is not surprising to see that SlCBF1 gene was not induced at 10 ˚C in cold tolerant 

genotype that probably SlCBF1 is not induced in low temperature when it decreased to 4 ˚C, 

SlCBF1 was stimulated. To compare the SlCBF1 with Arabidopsis-CBF1-3, the expression 

profiles of AtCBF1, AtCBF2 and AtCBF3 were evaluated in cold, drought and salt stresses 

using Arabidopsis microarray data. AtCBF1, AtCBF2 and AtCBF3 were highly expressed 

under cold stress (Fig. 5). AtCBF1 gene was found to be more expressed in cold stress than 

AtCBF2 and AtCBF3 while it was less induced in drought and salt stresses than others. In 

Arabidopsis, CBF1 is an early response and induces the CBF2 and CBF3 that involve 

stimulating the cold responsive genes [33]. It seems that AtCBF1 is main transcriptional 

activator during cold temperature and overexpressed AtCBF1 could increase the cold 

tolerance [34]. According to results of gene expression patterns, AtCBF1 is more involved to 

induce the key cold-regulated genes than SlCBF1. It seems that the regulatory mechanisms 

of tomato are probably different from Arabidopsis 

 
Figure 4– The SlCBF1 expression patterns under cold stresses (10 and 4˚C) after 3 days in 

Moneymaker (as cold sensitive genotype) and LA1777 (as cold tolerant genotype). 
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Figure 5– The expression profile of Arabidopsis-CBF1-3 under cold, drought and salt stresses based 

on microarray data using Genevestigator database 

CONCLUSION 

In this study, CBF1-3 from Arabidopsis and tomato were compared based on properties 

of protein sequence, phylogenetic analysis, interaction network and types of cis regulatory 

elements in promoter region. The results showed that tomato-CBFs are similar to 

Arabidopsis-CBFs based on amino acid sequences but they have different cis regulatory 

elements in promoter sites which could effect on their regulatory mechanisms. To better 

understand the function of CBF genes, the expression patterns of SlCBF1 were considered 

at10 and 4˚C in two contrasting tomato genotypes using qPCR that SlCBF1 exhibited 

differential expression in tomato genotypes. Present study revealed that CBF genes from 

Arabidopsis are more involved in cold stress than tomato-CBFs. The different factors such 

as promoter sequences and protein-protein interactions could affect on CBF functions. 
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