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Abstract: The α-tomatine is a steroidal glycoalkaloid found in immature tomatoes (Lycopersicon esculentum) 

that has important biological functions including the inhibition of cancer cell growth and preventing metastasis. 

This study aimed to evaluate the effects of α-tomatine on cytotoxicity, cellular proliferation, apoptosis, and 

mRNA expression of APC, CCNA2, β-catenin, CASP9, BAK, BAX and BCL-XL in colorectal adenocarcinoma 

cell line HT-29. HT29 cells were treated with three concentrations of α-tomatine (0.1, 1 and 10 µg/mL), 

although only the 1 µg/mL concentration of α-tomatine was used to evaluate genetic expression patterns by 

real time-PCR. Results showed that α-tomatine was cytotoxic only at the 10 µg/mL concentration. Cell 

proliferation was significantly inhibited after the first 24 hours of treatment only with concentrations of 10 

µg/mL. In contrast, there were no significant differences in apoptosis for any treatment. In the gene 

expression studies, only APC expression was significantly altered by α-tomatine treatment. In conclusion, α-

HIGHLIGHTS 
 

 The α-tomatine was cytotoxic at the 10 µg/mL concentration.  

 The α-tomatine inhibits cell proliferation after the first 24 hours of treatment. 

 The α-tomatine does not induce apoptosis up to the concentration of 10 μg/mL. 

 The α-tomatine induces increased APC gene expression. 
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tomatine has antiproliferative activity in the first 24h of treatment, does not induce apoptosis in this cell line 

and causes disruption of cell membranes, thereby increasing the expression of APC gene related to cell 

cycle.  

Keywords: alpha-tomatine; gene expression; cytotoxicity; cell cycle; DNA damage. 

INTRODUCTION 

Cancer is one of the most important public health issue around the world and many studies have been 

given attention to its development, control and treatment strategies. In 2018, 9.5 million of people worldwide 

died from cancer and the colorectal cancer is among the top fourth types of cancer killing men and women. 

Even though, 30-50% of cancers could be prevented by healthy lifestyle choices such as avoiding tobacco 

products, reducing alcohol consumption, maintaining a healthy body weight and exercising regularly. Others 

can be detected early, treated and also cured [1]. 

Nutrition is an important factor in an individual’s development from infancy to adulthood and likely affects 

vulnerability to chronic diseases, including cancer. It is estimated that diet affects 30 to 40% of all cancer 

cases. Bioactive components of foods can simultaneously alter more than one cancer process, including 

various events such as carcinogen metabolism, hormonal balance, cell signaling, cell cycle control, apoptosis 

and angiogenesis. These bioactive components found in food include essential nutrients (calcium, zinc, 

selenium, folate, and vitamins C, D and E) as well as non-essential components (carotenoids, flavonoids, 

indoles, conjugated linoleic acids, and omega-3 fatty acids) [2-4]. 

Glycoalkaloids are composed of six steroid rings (aglycone) with a sugar molecule attached to position 

three of the first ring and a nitrogen atom at the end of the sixth ring. Among the best-known glycoalkaloids 

are α-solanine and α-chaconine in potatoes and α-tomatine in tomatoes. The glycoalkaloid found in tomatoes 

is the steroidal glycoalkaloid α- tomatine, which consists of a branched tetrasaccharide, β-D-glucopyranosyl-

(1→2)-[β-Dxilopyranosyl-(1→3)] -β-D-glucopyranosyl-(1→4)-D-galactose, linked to O-3 of the steroidal 

aglycone, tomatidine. This glycoalkaloid is primarily found in immature tomatoes, which have an average of 

4-7 mg α-tomatine per 100 g of fresh fruit that is partially degraded as the fruit ripens. The α-tomatine content 

in mature tomatoes varies from 0.03-0.06 mg α-tomatine/100 g of fresh fruit [5-9]. α-tomatine possesses an 

important antifungal, antibacterial, antiviral, antimetastatic, cell membrane lysis, LDL cholesterol reducing, 

immunostimulatory, apoptosis and, most importantly, antiproliferative activity [7,10-19]. 

Apoptosis is a component of many processes including tissue maintenance and response to xenobiotic 

agents and endogenous changes such as inflammation and blood supply disruption, but also has an 

important role in the cancer development, prevention and therapy [20]. The balance between cell proliferation 

and apoptosis is fundamentally important for normal cellular function. Perturbation of this balance is the 

primary cause of tumors [21]. 

Due to the known beneficial effects of α-tomatine, the aim of this study was to evaluate its antiproliferative 

and apoptotic effects as well as changes in expression of cell proliferation related (APC, β-catenin, CCNA2) 

and apoptosis-related (BAK, BAX, BCL-XL, and Caspase-9) genes in intestinal adenocarcinoma epithelial 

cell cultures treated with α-tomatine. 

MATERIAL AND METHODS  

Cell lines and culture conditions 

The human colorectal adenocarcinoma cell line HT-29 was obtained from the Rio de Janeiro Cell Bank. 

The cells were cultured in 25 cm2 cell culture flasks with DMEM (Dulbecco´s Modified Eagle Medium (Gibco)) 

culture media supplemented with 10% Fetal Bovine Serum (Gibco) in a humidified incubator with CO2 (5%) 

at 37 ºC. 

Carcinogenic Agents 

The carcinogenic agent Doxorubicin (CAS: 23214928: Rubex®), dissolved in Dimethyl Sulfoxide 

(DMSO), was used to cause DNA damage. The concentration of Doxorubicin used for the treatment of HT29 

cells was 2 µg/mL, as determined previously in pilot experiments. 
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α-tomatine  

A synthetic form of α-tomatine (CAS 17406-45-0) was obtained from Sigma Chemical Co., St. Louis, 

MO, dissolved in Dimethyl Sulfoxide (DMSO), and used at three concentrations (0.1, 1, or 10 µg/mL) for 

treatment in each experiment, as previously determined in pilot experiments. 

Cytotoxicity Test (MTT) 

The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-dipheny-tetrazolium-bromide] cytotoxicity test was performed 

following the protocol described by Mosmann [22]. HT29 cells were seeded in a 96-well cell culture plate to 

a density of 2.0 x 104 cells/well and exposed to treatment for 24 h with different concentrations of α-tomatine 

(0.1, 1 and 10 µg/mL), doxorubicin (2 μg/mL) or with PBS and DMSO as vehicle controls. At the end of the 

24 h period, the treatments were removed and the cells were washed with PBS. Next, the cells were 

incubated at 37 °C for 4 h with MTT (CAS 298-93-1; Sigma Aldrich; 0.005 g MTT; 5 mL PBS; 10 mL culture 

media without serum). After this stage, the culture media was removed, DMSO was added and readings were 

made in an Elisa reader with a 550 nm filter. The experiment was performed in triplicate. 

Kinetic Analysis of Cell Proliferation 

For this test, 2.0 x 105 cells were seeded into culture flasks. The cells were treated with a DNA-damage 

promoting agent (2 µg/mL Doxorubicin), control (1% DMSO), or α-tomatine (0.1, 1 or 10 µg/mL). This 

procedure was performed for 24, 48, 72, or 96 h, after which the cells were collected and counted in a 

Neubauer chamber. Following analysis, a proliferation curve was generated. These experiments were 

performed in triplicate. 

Cell viability analysis by the Trypan Blue Exclusion technique 

After collection of the cells in culture flasks, 20 µl of cell suspension was collected and combined with 20 

µl of Trypan Blue. The mixture was pipetted into a Neubauer chamber and analyzed under a microscope to 

obtain the percentage of viable cells by finding the ratio of living to dead cells. The study was performed in 

triplicate concurrent to the cell proliferation kinetics analysis. 

In situ test for detection of apoptosis 

Identification of apoptotic cells was performed by analyzing the DNA fragmentation pattern of nuclear 

DNA after staining with acridine orange. Cell treatments with the three tested concentrations (0.1, 1 and 2 

µg/mL) were performed after culture stabilization (24 h). The concentration of 2 µg/mL was biologically 

accepted after further testing with lower concentrations, since the concentration of 10 µg/mL was considered 

lethal for this test. The collection was performed after 24h of treatment [23]. 

After washing with PBS, the cover slip was removed from the culture tube and fixed in Carnoy fixative 

for 5 min, quickly dipped in plates containing decreasing concentrations of ethanol (95% to 25%), followed 

by a wash in McIlvaine's buffer for 5 min., staining with orange acridine (0.01%, 5 min) and another wash in 

the buffer.  

Three repetitions were performed and 1,500 cells were analyzed per treatment with a fluorescent 

microscope (420-490 nm excitation filter and a 520 nm barrier filter). 

Real-time PCR 

Cells were seeded in 25 cm2 culture flasks to a density of 2.0 x 105 cells/flask and incubated to allow cell 

growth for 24 h. They were then treated for twelve hours in the following experimental groups: 1 - negative 

control and 2 - α-tomatine (1 µg/mL).  

Next, total RNA was extracted with Trizol LS (Invitrogen®) following the manufacturer’s instructions. 

Quantification and integrity analysis of the RNA was then performed by electrophoresis on a 0.8% agarose 

gel. cDNA synthesis was performed by reverse transcription using an oligo (dT) primer (10 pmol/µL 

Prodimol®) and reverse transcriptase (M-MLV reverse transcriptase – Invitrogen) following the 

manufacturer’s instructions.  

The cDNA was stored at -80 °C. The cDNA samples were quantified using a spectrophotometer (260 

nm and 280 nm). One microliter of the sample was diluted in 99 mL of TE buffer for measurement (0.01 M 

TrisHCl, 1 mM EDTA, pH = 8.0). Following quantification, triplicate samples were mixed in one tube and then 

redistributed into three new microtubes and stored at -80 ºC until real-time PCR was performed.  
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Real-time reactions were set up in a 96-well propylene plate. The PCR program was performed 

according to the following protocol: preheating at 50 °C for 1 min, cDNA denaturation at 95 °C for 3 min 

followed by 35 cycles consisting of 95 °C for 20 seconds, annealing of primers at 60 °C for 30 seconds and 

extension at 72 °C for 20 seconds. The dissociation curves were created as follows: 95 °C for 15 seconds, 

60 °C for 20 seconds and 95 °C for 15 seconds. Melting curve analysis was performed at the end of the 

reaction with temperatures ranging from 50 °C to 95 °C at 0.5 °C intervals for 5 seconds.  

The treatments were evaluated in duplicate and the reactions were performed in a PTC 200 DNA Engine 

Cycler thermocycler using the detection system Chromo4 (MJ Research). Primer sets (APC, CCNA2, 

Catenin, CASP9, BAK, BAX and BCL-XL) and normalization gene primers for glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) were amplified as described in Table 1. 

Table 1. Primers sequences used in Real Time PCR reactions. 

Gene Primers 

GAPDH 
F: 5’ GAAGGTGAAGGTCGGAGTC 3’ 

R: 5’ GGAAGATGGTGATGGGATTT 3’ 

APC 
F: 5’ AAAGCGCCATGATATTGCACGGCT 3’ 

R: 5’ TGTTTGCTGTGCTCACGTTTCCAG 3’ 

CAT 
F: 5’ CCTATGCAGGGGTGGTCAAC 3’ 

R: 5’ CGACCTGGAAAACGCCATCA 3’ 

BAK 
F: 5’ CAAGATTGCCACCAGCCTGTTTGA 3’ 

R: 5’ ATGCAGTGATGCAGCATGAAGTCG 3’ 

BAX 
F: 5’ TTTCTGACGGCAACTTCAACTGGG 3’ 

R: 5’ TGTCCAGCCCATGGTTCTGAT 3’ 

BCL-XL 
F: 5’ TGGGCTCACTCTTCAGTCGGAAAT 3’ 

R: 5’ ATGTAGTGGTTCTCCTGGTGGCAA 3’ 

CASP9 
F: 5’ GCTCTTCCTTTGTTCATCTCC 3’ 

R: 5’ GTTTTCTAGGGTTGGCTTCG 3’ 

CCNA2 
F: 5’ GACCCTGCATTTGGCTGTG 3’ 

R: 5’ ACAAACTCTGCTACTTCTGG 3’ 

Statistical Analysis 

Statistical analysis of the MTT test was performed by analysis of variance (ANOVA) followed by 
the Tukey test (α<0.05) using the Graphpad Instat program. Data obtained from the cellular 
proliferation kinetics, cell viability, and induction of apoptosis tests were statistically analyzed by 
analysis of variance (ANOVA) followed by the Dunnet test (α<0.05) using the Graphpad Instat 
program. Gene expression levels of the genes in this study were analyzed using Rest Software to 
estimate the calculation based on the delta Ct method [24,25]. 

RESULTS 

MTT Test 

The viability values (mean ± standard deviation) obtained from the MTT test after treatment with α-
tomatine at various concentrations (0.1, 1 and 10 µg/mL) in HT29 cells for 24 h are shown in Figure 1. The 

results from the α-tomatine treatments using 0.1 µg/mL were not significantly different from the control. 

However, there was a significant difference compared to the control at the 1 µg/mL concentration. There was 

cell death when cells were treated with 10 µg/mL, indicating that α-tomatine is cytotoxic at this concentration. 

Therefore, increased concentrations of α-tomatine result in inhibitory effects on HT29 cells. 
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Figure 1. Absorbance values found in MTT test after 24 hours of treatment with α tomatine (0.1, 1 and 10 µg/mL in 
HT29 cells. Control – 0.1% DMSO; Doxorubicin – 2 µg/mL. **p<0.01; significant difference compared to control 
(ANOVA/Dunnet). 

Cell proliferation study 

The cell proliferation test was performed at 24, 48, 72, and 96 h, and the scores (mean ± standard 

deviation) are presented in Figure 2 and shows the kinetics of cell proliferation for each treatment at each 

tested time point. There was a significant difference at 24 h between treatment with α-tomatine at 0.1, 1, and 

10 µg/mL and control using Doxorubicin. At the highest tested concentration (10 µg/mL), there was no 

increase in cell proliferation rate in the first 24 and 48 h of treatment. After 72 h of treatment, a decrease in 

cell proliferation was observed in cells treated with Doxorubicin when compared to controls. At 0.1 and 1 

µg/mL of α-tomatine, there was an increase in cell proliferation without a statistically significant difference 

compared to the control. In the 96-h treatment, there was a significant difference in the rate of proliferation 

between control and treated cells with the largest dose of α-tomatine and Doxorubicin. At the 0.1 and 1 µg/mL 

concentrations, there was an increase in cell proliferation, but this was not significantly different from the 

control. 

 
Figure 2. Kinetics of cellular proliferation observed in the treatment of α-tomatine at 0.1, 1 and 10 µg/mL at 24, 48, 72 
and 96 h in HT-29 cells (Nº cells x 104). Control – 0.1% DMSO; Doxorubicin – 2µg/mL; α-tomatine 0.1 – 0.1µg/mL; α-
tomatine 1 – 1µg/mL; α-tomatine 10 – 10µg/mL. **p<0.01; significant difference compared to control (ANOVA/Dunnet). 
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Cell viability 

The viability of cells treated with 0.1 µg/mL or 1 µg/mL of α-tomatine was greater than 80% at all time 

points. However, the cells showed 0% viability in all treatment time points at 10 µg/mL. The cells treated with 

Doxorubicin had less than 80% cell viability only after 96 h. These data are shown in Table 2. 

Table 2. Means of percentage of cell viability and standard deviation of HT29 cells treated with three different 
concentrations of α-tomatine at 24, 48, 72 and 96 h. 

Treatment 

 

Treatment time 

24 h 48 h 72 h 96 h 

Control   96.75±0.99 97.59±2.85 90.89±14.41 98.00±2.83 

α-tomatine 0.1 µg/mL  99.20±1.38 97.11±2.67 100.00±0.00 100.00±0.00 

α-tomatine 1 µg/mL   100.00±0.00 97.13±3.43 98.43±2.21 97.56±0.00 

α-tomatine 10 µg/mL  00.00±0.00* 00.00±0.00* 00.00±0.00* 00.00±0.00* 

Doxorubicin  88.53±4.68* 97.22±4.81 93.33±11.54 66.66±57.73 

Control – 0,1% DMSO; Doxorubicin – 2µg/mL.  * = P ≤ 0.05 - ANOVA followed by Dunnett post-test. 

Apoptosis 

The percentage of viable and apoptotic cells analyzed is shown in Figure 3. No change in the apoptosis 

rate was observed in treatments of α-tomatine (0.1, 1, and 2 µg/mL) compared to controls. Only Doxorubicin 

showed a significant increase compared to the control. 

 
Figure 3. Average frequency of normal and apoptotic cells observed in HT29 cell lineage treated with α-tomatine at 0.1, 
1 and 2 µg/mL. Control – 0.1% DMSO; Doxorubicin – 2µg/mL. 500 cells were analyzed per slide under the fluorescent 
microscope at a magnification of 400x. The cells were classified by morphological appearance and differential staining 
by orange acridine and ethidium bromide. Necrotic cells were not found.   **p<0.01; significant difference compared to 
control (ANOVA/Dunnet). 

Real-time PCR (RT-PCR) 

APC gene expression 

HT-29 cells under treatment with α-tomatine (1 µg/mL) resulted in a 2.26-fold significant increase in APC 

gene relative expression (p<0.05). The other evaluated genes showed small variations (CAT - 1.64-fold 

increase, BAK - 1.71-fold increase, BAX - 1.11-fold increase, BCL-XL - 0.94-fold decrease, CASP9 - 1.42-

fold increase and CCNA2 - 0.90-fold decrease) that were not statistically significant (p>0.05), results 

presented in Figure 4.  
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Figure 4. Relative expression of APC, CAT, BAK, BAX, BCL-XL, Caspase-9 and CCNA2 with treatment of α-tomatine 
1μg/mL obtained by Real Time PCR. Control – GAPDH; * indicates statistically significant difference (p<0.05). 

DISCUSSION 

Glycoalkaloids are compounds consisting of a nitrogen-containing steroidal aglycone. α-tomatine, one 

of the main glycoalkaloids in tomato (Lycopersicon esculentum), has been reported to exert many beneficial 

effects, including biological, nutritional and pharmacological properties. Among the main activities of α-

tomatine, its immunological adjuvant action, antifungal and antibacterial activity, anticholesteremic effects, 

steroid hormone precursor status, anticancer potential, antimetastatic activity and cytostatic effect in various 

cancer cell lines are significant [11-14,19,26-29]. 

However, even though α-tomatine shows great potential to lyse cell membranes, this glycoalkaloid was 

not toxic by oral consumption in rats [10]. This can be explained by its weak absorption in the digestive tract 

into the bloodstream, and the formation of an insoluble complex between α-tomatine and endogenous 

cholesterol, which is quickly eliminated in the stool. Roddick [30] demonstrated that both a mix of potato 

steroid glycoalkaloids and α-tomatine have the capacity to form complexes with steroids such as cholesterol, 

sitosterol, stigmasterol, campesterol, and ergosterol.  

In this study, the cytotoxicity of α-tomatine was evaluated at three different concentrations (0.1, 1, and 

10 µg/mL) in HT29 cells by the MTT test after 24 h of treatment. We observed that use of the DNA damage-

inducing agent, Doxorubicin, led to cytotoxicity. The results, presented in Figure 2, show that α-tomatine 

treatment at a concentration of 0.1 µg/mL was not cytotoxic. However, treatments at 1 and 10 µg/mL resulted 

in statistically significant differences in toxicity when compared to controls. In contrast, cell proliferation 

assays showed that while the first 24 hours of treatment had an inhibitory effect on cell proliferation for the 

treatments with 0.1 and 1 μg/mL, the time points at 48, 72 and 96 h had increased cell proliferation, 

corroborating the cell viability results. At a concentration of 10 µg/mL, the seeded cells died and did not 

proliferate throughout the entire treatment period.  

In the cell viability test, performed in conjunction with the test mentioned above, the results showed that 

more than 80% of the cells were alive for the concentrations of 0.1 and 1 µg/mL, confirming that there was 

no cell death but an inhibition of cell proliferation. In contrast, the cells were not viable after 24 h of treatment 

at a concentration of 10 µg/mL.  

Lee, Kozukue [12] performed a study to evaluate the antiproliferative activity of the glycoalkaloids α-

chaconine, α-solanine and α-tomatine on various cell lines at three different time points (4, 24 and 48 h). α-

tomatine was tested at five different concentrations (0.1, 0.5, 1, 5, and 10 µg/mL) and the authors observed 

that α-tomatine inhibited between 60.6% and 86.9% of the cell proliferation of HT29 cells at 24 h of treatment. 

However, contrary to the study presented here, the authors observed between 65.6% and 86.5% inhibition 

of HepG2 cell proliferation at the 48 h time point, and with the HT29 cell line, the same used in this study, the 

authors observed a 38% inhibition of cell growth at a concentration of 0.1 µg/mL, 59.9% at a concentration 

of 1 µg/mL and 81.5% at a concentration of 10 µg/mL after 4 h of α-tomatine treatment.  

In another study by Friedman, Levin [16], α-tomatine inhibited proliferation of mammary (MCF-7), 

colorectal (HT-29), gastric adenocarcinoma (AGS), and hepatoma (HepG2) cancer cell lines and was more 

effective than tomatidine, tomatidenol, and dehydrotomatine, even though α-tomatine is structurally similar 

to dehydrotomatine.  
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A study with lung adenocarcinoma cell line A549 showed that α-tomatine potentially inhibits the 

metastatic ability of these cells either by reducing the activity of matrix metalloproteinase-2 (MMP-2), matrix 

metalloproteinase-9 (MMP-9), and urokinase type plasminogen activator (u-PA), suppressing 

phosphoinositol kinase/Akt (PI3K/Akt) or inhibiting NF-κB or AP1 through ERK1/2 signaling [17].  

For a better understanding of the chemopreventive mechanisms of α-tomatine it is important to consider 

that several molecular events are responsible, including complex formation with cholesterol and direct 

destruction of tumor cells by cell membrane lysis [7,10].  

In order to elucidate the effects of α-tomatine on cell cycle, we investigated the molecule’s functional 

mechanism by studying the relative expression levels of APC (Adenomatous polyposis coli), β-catenin and 

CCNA2. Somatic mutations are found in the majority of colorectal tumors, and the APC gene is frequently 

expressed in advanced colon cancer and has multiple cellular functions such as involvement in the WNT 

signaling pathway and intracellular adhesion. The APC protein is involved in cell cycle (acting as a negative 

regulator of β-catenin levels), in the transformation of colon epithelial cells, and in the progression of 

melanoma. The WNT signaling pathway regulates a complex consisting of axin, APC, β-catenin, and 

glycogen synthase kinase-3β (GSK3β). Axin forms a complex with APC, β-catenin and GSK3β to promote 

the phosphorylation of β-catenin and subsequent binding to β-TRCP which mediates the ubiquitination and 

degradation of β-catenin in the proteasome. GSK3β regulates this process by phosphorylating β-catenin, 

APC and the axin complex. The activation of the WNT signaling pathway inhibits GSK3β to stabilize β- catenin 

[31-35].  

On the other hand, APC has also been reported to be involved in cytoskeletal integrity, intracellular 

adhesion and cell migration. Disruption of the integrity of the actin cytoskeleton could lead to perturbations in 

cellular junctions and cell migration. The role of the APC protein in actin cytoskeleton maintenance is related 

to its interaction with β-catenin, which creates a connection between APC and actin [36-38].  

Narayan and Roy [33] have reported that the C-terminal domain of E-cadherin interacts with β and γ-

catenin, which associates with α-catenin and forms a complex binding E-cadherin to actin in the cytoskeleton, 

maintaining stability in the intercellular adhesions [32]. If WNT pathway and epidermal growth factor receptor 

(EGFR) or c-Met pathways are activated at the same time, the degradation of β-catenin can be inhibited and 

translocated into the nucleus. This way, these interactions can result in a reduction of E-cadherin that 

mediates intercellular junctions and cell migration. The translocation of β-catenin to the nucleus occurs 

naturally, through external signals that promote proliferation. However, mutations in APC result in a loss of 

β-catenin regulation, leading to an exacerbated increase in its cytoplasmic concentration and increased 

translocation to the nucleus. In the majority of intestinal colon cancers, as in the case of HT29, APC is mutated 

rendering the protein product of this gene not functional, which causes a loss of cell proliferation regulation 

[39,40].  

Based on our results, we observed that there was an increase in the expression of the APC gene, similar 

to the β-catenin gene, in cultures treated with α-tomatine (Figure 5). It is assumed that the role of 

glycoalkaloids may be involved in the disruption of cell membranes, causing changes in some genes’ 

expression involved in cell cycle leading to a decrease in the number of cells during this period of treatment 

(12 h). Thus, inhibition of cell proliferation in the first 24 hours corroborates the gene expression results. In 

addition, the small (non-significant) increase observed in β-catenin gene expression could be a result of an 

increase in demand due to increased APC expression. 

Wang, Song [41] suggested that the deregulation of CCNA2 expression is closely linked to the early 

events of tumor transformation, and its suppression is considered typical in various types of human cancers 

when compared to normal tissues. However, our results show that α-tomatine does not statistically interfere 

with CCNA2 expression. As part of our goals, we also analyzed apoptosis by morphological analysis under 

a fluorescent microscope and by expression analysis of the BAK, BAX, BCL-XL and Caspase-9 genes. The 

experimental results obtained in this study demonstrate that there was not an induction of apoptosis, either 

by physiological changes found in apoptotic cells such as chromatin condensation, formation of apoptotic 

bodies, fragmentation of nuclear DNA, or by increased expression levels of the analyzed genes.  

This research helps in the understanding of nutrigenomics and opens new perspectives that will allow 

better insights on the mechanisms of action of α-tomatine. 
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CONCLUSIONS 

Based on our results, it is suggested that α-tomatine has antiproliferative activity in the first 24 h of 

treatment does not induce apoptosis in human colorectal adenocarcinoma cell line (HT-29) and causes 

disruption of cell membranes, thereby increasing the expression of APC gene related to cell cycle. 
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