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Abstract: The climatic zones of Mato Grosso do Sul (MS) were defined based on the mathematical 

methodology of cluster analysis (CA). Data from 77 climatic seasons of average annual temperatures 

(maximum and minimum) and total annual precipitation data from 1978 to 2013 were used, and hierarchical 

(Ward) and partitional or non-hierarchical (k-means) CA algorithms were chosen, as two of the most used 

approaches, to carry out the regionalization. The optimum number of clusters in which the data can be 

grouped was determined by the statistical methods of elbow, silhouette and gap. The stability of the clusters 

is also tested by statistical approaches and four homogeneous groups were found, as in conventional climatic 

zones, but with considerable border differences. Pearson's correlation coefficient (r) between the series in 

HIGHLIGHTS 

 
• Hierarchical cluster analysis was efficient in determining climatic areas. 

• The elbow method for the optimal number of clusters was the most suitable.  

• Notch boxplot analysis and comparing tests can help in the number of clusters. 

• The clusters formed were correlated with geographical and climatic variables. 

• Meteorological systems and topography assist in the discrimination of clusters. 
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each cluster helps to understand the dynamics of these clusters. The hierarchical cluster analysis and the 

elbow method for the optimal number of clusters was the most appropriate and satisfactory and was able to 

train and validate homogeneous regions of climate in the state of Mato Grosso do Sul. The efficient 

application of these methodologies is confirmed by the delimitation of four distinct clusters (homogeneous 

regions of climate), consistent with recorded heights and temperatures (maximum and minimum) and 

geographical characteristics as topography, in the state of Mato Grosso do Sul. 

Keywords: cluster analysis; climatic zones; climate regionalization; Mato Grosso do Sul. 

INTRODUCTION 

Climate similarity measures between regions, typically presented as climate classes, are useful for 

representing spatial environmental characteristics. The most practical way to establish the climate of a region 

is through the analysis of monthly average temperature and monthly total precipitation [1,2,3]. This is a key 

barrier when studying regions with a substantial lack of climate data, such as Brazil and developing countries. 

Another important issue in climate classification studies is related to a climate class boundary detected by 

various time series data sets from different periods that may reflect climate change [4,5]. There are some 

approaches for regionalizing climate areas according to the similarity of regional climate characteristics in 

rule-based precipitation and temperature schemes [2,6], clustering [7-8] and machine learning-based 

classification [6-8]. 

The cluster analysis (CA) is the most widespread technique for climate classification [2,3,8] and it is 

based on the similarity or dissimilarity between the objects. The Euclidian distance is a consistent method for 

dissimilarity measurement between objects and is widely used as a basis for the agglomeration of these 

objects into clusters [8,9]. The agglomeration may be processed by hierarchical and partitional (non-

hierarchical) cluster-based methods, such as single, medium and full bonding, Ward's method and k-means 

clustering, to define the climate characteristics of the different sub-groups. The suitability of a clustering 

method for climate classification is assessed by comparing standard deviations within and between clusters 

[7,10,11]. 

Likewise, CA has been widely used for climate regionalization [9,11,12,13]. Broadly, CA attempts to 

maximize similarity within a group while minimizing similarity between groups [14]. Numerous clustering 

algorithms are generally classified as hierarchical or non-hierarchically optimization techniques [14]. One 

disadvantage of hierarchical methods is that entities that are misclassified at the early stage of the clustering 

process are not relocated later on [15]. In addition, defining the final number of clusters (i.e. stopping point) 

can be challenging since different hierarchical methods can give quite different results. Optimization 

techniques allow the reallocation of entities. 

According to [10,17,18,19], the non-hierarchical method of grouping k-means surpasses the classical 

climate classifications and those non-hierarchical methods have surpassed hierarchical methods. In addition, 

Huth [19] showed that each clustering algorithm has its strengths and weaknesses when applied to sets of 

climatic data. Currently, there is no preferred grouping method for regionalizing the climate. However, if a 

data set is well-nucleated, the solutions of different clustering algorithms must be broadly similar [21]. 

Regardless of applying hierarchical or non-hierarchical clustering method, the optimum number of 

clusters (k) can be evaluated by several algorithms such as the elbow method [9], the silhouette method and 

the “Gap statistic” method [21]. But there is no consensus which is the best method. It is advised, in climate 

data clustering classification, to compare the clusters formed by each method to establish the optimal number 

of clusters and to perform spatial correlation of the geographical and climate variables [2,3]. 

The climate of a region is a key determinant of the functional requirements to be considered in 

engineering projects, agricultural activities and water resources management [8,9,18]. Therefore, 

understanding tropical climates is difficult due to a paucity of data but also because studies on climate 

classification are scarce [8]. The tropical regions are characterized by daily variations whereas at higher 

latitudes seasonal variation is the dominant characteristic [1]. The state of Mato Grosso do Sul (MS), center-

west of Brazil, stands out due to its robust agricultural sector, the main economic activity, emphasizing soy 

and cattle production [22]. The knowledge of its climatic characteristics is important to design strategies that 

can define comfortable living conditions, ideal management of crops, water and natural resources 

conservation. In this study, we intend to define spatially homogeneous regions on the basis of the most 

relevant hydrometeorological variables of MS, using different approaches by CA. 
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MATERIAL AND METHODS 

Characterization of the study area 

The state of MS is located in the Midwest Region of Brazil (Figure 1a), with the total area approximately 

358,159 km2. The State stands out for its agricultural activity, being the main economic products in MS, in 

particularly soy and cattle production. The topography (Figure 1b) has elevations range varies from 24 to 

1,100 m [23], while mean annual temperatures range varies from 20 to 26°C and mean annual rainfall ranges 

from 1,000 mm to 1,900 mm. The state has a well-defined dry season between April and September, in which 

the highest rainfall records are observed in the southern portion of the state. However, the northern region of 

the state receives higher rainfall records in the rainy season (between October and March) compared to the 

southern region.  

The Köppen’s climate classification divides the climate diversity of MS to several climatic regions: (i) 

“Aw” (tropical zone with dry winter), in the Southeast and North of the state; (ii) “Am” (tropical zone monsoon) 

in the central region; (iii) “Af” (tropical zone without dry season) in the Southwest; and (iv) “Cfa” (humid 

subtropical zone with hot summer) in the Southern of the state (Figure 1c). In the Southwest of Mato Grosso 

do Sul, south of the Pantanal (between -21º and -22º latitudes), the climate is characterized as tropical forest 

(“Af”), with rainfalls distributed throughout the year. The central portion of the state is predominantly 

characterized by tropical monsoon climate (“Am”), with a small dry season during winter. In the North, a small 

part of the central region and the Southeastern state, the characterized climate is savannah (“Aw”) which 

tends to dry winters and rainy summer. Only in the South of the state, the climate is humid in all seasons with 

hot summers (“Cfa”) (temperatures > 22ºC) [1, 24].  

The biome diversity of Mato Grosso, as represented in Figure 1d, includes areas of the Atlantic Forest, 

Cerrado and Pantanal (encompassed 14%, 61% and 25% of the state’s area, respectively). The Atlantic 

Forest area is an extremely important biome due to its abundant biological diversity, and has gained great 

interest as a conservation area, since its biome has been considerably reduced. The Brazilian Cerrado, a 

vast tropical savanna ecoregion, is widely known for its native habitats and rich biodiversity, and represents 

the second largest biome in South America, after the Amazon. The Cerrado of Mato Grosso do Sul is located 

in two hydrographic regions of Brazil, Paraná and Paraguay. The Pantanal region is the world’s largest inland 

wetland. It is a home to a rich wildlife and is known for its unique biome, however it is also considered as a 

biodiversity hotspot due to environmental degradation and damage [23].  

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Figure 1. Mato Grosso do Sul state: (a) localization in South America and in Brazil (b) digital elevation model (DEM) (c) 
climate classification by Köppen (d) biomes. 

Rainfall and temperature data set 

Annual average maximum temperature, annual average minimum temperature and total annual 

precipitation data set were collected from 77 weather stations (Figure 1) during 1978-2013 in Mato Grosso 

do Sul (MS) state, from the National Institute of Meteorology (INMET) networks (Table A1). The total annual 

precipitation (Prec, mm), the average maximum temperature (Tmax, ºC) and average minimum temperature 

(Tmin, ºC) were obtained for each weather station. These climatic variables were used to cluster analysis. 

The gaps admitted for analysis were, at most 10% [8]. Table 1 presents the Prec, Tmax and Tmin variables 

and their respectively standard derivation. 

Cluster Analysis (CA) 

The classificatory variables (Prec, Tmax and Tmin) were submitted to a grouping process, which aims 

to compose groups with high internal homogeneity within the groups and a high external heterogeneity 

between the groups. To consider all weighted variables equally in the CA, the data were standardized with 

mean zero and unit variation. There are two types of grouping methods; nonhierarchical methods, which 

produce a fixed number of groupings, and hierarchical methods, which form groupings through an increasing 

sequence of group partitions - divisive approach - or successive group joins - agglomerative approach. For 

both hierarchical and nonhierarchical clustering methods, the evaluation of the group structure contained in 

the data was made by the hierarchical CA, using Euclidean distance (dE) [8,11]: 

𝑑𝐸 = [∑(Pp,j

n

j=1

− Pk,j)
2]

0.5

                                                                                   (1) 
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Where dE is the Euclidian distance, and Pp,j and Pk,j are the quantitative variables j from elements p and 

k, respectively. 

The hierarchical method most used in environmental studies for cluster analysis is the Ward’s algorithm 

[9,25,26]. Ward’s algorithm minimizes the dissimilarity, or the total sum of squares (TSS), when establishing 

groups, which are determined in each step so that the solution has the minimum TSS within each group 

[9,26]. 

Unsupervised method of classification aims to minimize the sum of quadratic errors over all groups. This 

requires three specific parameters: number of groups, group initialization, and distance metric. The quadratic 

error between mean of the clusters (uk) and the points in group of the center of the k clusters (Ck) are defined 

as [18,27]: 

J(Ck) = ∑ (Xi

n

𝑋𝑖𝜀𝐶𝑘

− μk)2                                                                                         (2) 

Where J(ck) is the quadratic error between uk and Ck, X = xi, i = (1,2, ..., n) is the set of n d-dimensional 

points, C = ck, k = (1,2, ..., K) is the set of K clusters and μk is the mean of Ck clusters. Since the goal is to 

minimize the sum of squared error (J(c)) over all clusters, the equation is rewritten: 

J(C) = ∑ ∑ (Xi − μk)2

n

XiεCk

k

k=1

                                                                                   (3) 

The unsupervised clustering methods such as k-means promotes balanced iterative reducing. The k-

means algorithm was successfully used to regionalization the temperature and precipitation in Europe [3,28], 

Brazil [8,9,11,29], Bolivia [2] and Iran [20].  

Optimum number of Clusters 

The optimal number of clusters was determined by tree different methods: elbow [9], silhouette and the 

gap statistic methods [21]. 

The Elbow method looks at the total within-cluster sum of square (WSS) criteria for defining the optimal 

number of clusters: One should choose a number of clusters in a way that additional cluster will not greatly 

increase the total WSS. Elbow method computes the clustering algorithm for different values of k, varying 

from 1 to 10 clusters. For each k, the calculate WSS is plotted according to the number of clusters k, resulting 

in a curve. The location of the elbow (bend) of the curve is typically an indicator for the appropriate number 

of clusters. When groups are being arranged their Euclidian distances are initially small, increasing in each 

step of the process [9]. 

The gap statistic approach, proposed by [21], can be applied to any clustering algorithm. The gap statistic 

is also used to study the separation distance between the resulting clusters, by comparing the change in 

within-cluster dispersion with that expected under an appropriate reference null distribution. It includes the 

following steps: (i) Cluster the observed data over some range of k = 1, …, kmax, and compute the 

corresponding total within-cluster dispersion (Wk). (ii) Generate B reference data sets with a random uniform 

distribution, and cluster each of them with varying number of clusters k = 1, …, kmax, and compute the 

corresponding total within intra-cluster variation Wkb. (iii) Compute the estimated gap statistic as the deviation 

of the observed Wk value from its expected value Wkb under the null hypothesis: 

gap(k) =
1

B
∑ log(Wkb) − log (Wk)

B

b=1

                                                             (4) 

(iv) Compute the standard deviation of the statistics. (iv) when reaching a point where the error stop 

decreasing, set the smallest value of k as the appropriate number of clusters for a given data set such that: 

gap(k) ≥ gap(𝑘+1)−𝑆𝐾+1
                                                                                       (5) 

Equation 5 is searching for the subsequent pairs of k and k+1 for finding the smallest value of k that 

maximizes the gap statistic, adjusted for the expected variance (SK+1), meaning that the clustering structure 

is far away from the random uniform distribution of points. 

The Silhouette index, developed by [30], can be used for the validation of grouping data points into 

clusters. Silhouette width evaluates the quality of the resulting clusters, considering both the compactness 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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(distance between data points within the same group) and the separation (distance between data points in 

two neighboring groups). This method makes it possible to assess the appropriate number of groups, such 

that the chosen value of k is providing the most fitted mean value of Silhouette [31,32]. The Silhouette 

coefficient (S) is calculated by: 

s(i) =
bi − ai

max (biai)
                                                                                                 (6) 

Where ai is the mean distance between i and all other instances in the same cluster, and bi is depicts 

mean nearest cluster, i.e mean distance to the i instances of the next closest cluster:  

b(i) = ∑
dist(i,j)

n (Ck)
jϵCkck ∈δCi

min

                                                                                       (7) 

Where C(i) is the cluster containing instances i, dist(i, j) is the distance (e.g. Euclidean) between instances 

i and j, and n(C) is the cardinality of cluster C. The Silhouette Width thus varies between the [−1, 1] interval 

and should be maximized [30]. A value close to 1 implies that the instance is close to its cluster, and is a part 

of the appropriate cluster, while a value close to -1 means that the value is assigned to wrong cluster. When 

a value is characterized by the value zero, it becomes impossible to identify the group to which they belong. 

The mean silhouette width of a group - Sk for all instances i in a given group is defined as the mean of 

all individual silhouettes, where n is the number of objects in the dataset, as follows: 

s(k) =
∑ S(i)

n
i=1

𝑛
                                                                                                         (8) 

Finally, constructing a silhouette plot, which graphically represents the consistency within the clusters of 

the data, can provide the means to visually assess cluster quality.  

Clusters Validation 

The validation of the number of clusters was done by performing notch boxplot analysis [8]. The notch 

boxplot displays a confidence interval around the median of Prec, Tmax and Tmin for each cluster. It can be 

visually observed if the clusters medians differ or not, by their overlap. The Wilcoxon-Mann-Whitney test was 

performed for testing the equality of the means of Tmax, Tmin and Prec in each of the clusters. For this 

purpose, we considered the optimum number of clusters derived by (item 2.2) each methodology and 

compared the clusters. If the means do not differ between clusters, it was considered as an evidence for 

reducing the number of groups.  

Next, the clusters formed were plotted to check their spatial distribution and their coincidence with 

climate, biomes and geographical characteristics (latitude, longitude and altitude). Moreover, the Pearson 

correlation was performed to analyze the behavior of Tmax, Tmin and Prec with geographical characteristics 

in MS state, approach in order to verify the differences in each cluster in spatial terms. 

Software used to perform analysis and maps 

All data analysis were performed in R software [33], using the following Packages: cluster [34], facto 

extra) [35], nbClust [36] and ggcorrplot [37]. The maps were produced by ArcGIS [38]. 

RESULTS AND DISCUSSION 

The criteria for the optimal number of clusters analysis were similar for both hierarchical and non-

hierarchical clustering algorithms, however differences were observed using the different methods (Elbow, 

Gap Statistic and Silhouette methods) - (Figure 2). The number of optimal clusters varied from 1 to 4, and 

the most consistent number of clusters was two (tree times) and tree (twice). The hierarchical clustering 

algorithm followed by the Elbow method indicated 4 climatically homogeneous regions on the basis of the 

most relevant hydrometeorological variables in MS state, corroborating the number of groups founded in a 

previous analysis by [11], and closer to the five groups founded by [23]. These studies [8, 23] considered just 

the precipitation as variable for clustering. The formation of groups in the works of [8] and 23] were justified 

in systems operating in the MS state, which shows an advantage of the hierarchical method followed by the 

Elbow method in discriminating groups. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Figure 2. Optimal number of clusters by the Elbow, Silhouette and Gap Statistic methods, using hierarchical clustering 
algorithms (panel a, c and e) or by using non-hierarchical clustering algorithms (panel b, d and f). 

Figure 3 shows the notch boxplot for cluster results using hierarchical (Figure 3 a, c and e) and non-

hierarchical (Figure 3 b, d and f) clustering algorithms for precipitation (Prec), maximum (Tmax) and minimum 

(Tmin) temperatures. The notches in the boxplots of Prec, Tmax and Tmin show a confidence interval around 

the median and do not overlap between the different groups (except for the cluster 1 and cluster 3 in except 

for the cluster 1 and cluster 3 for the annual precipitation in hierarchical cluster analysis – Figure 3 a), a 

strong evidence that their medians differ. Table 1 shows the Wilcoxon-Mann-Whitney test results, which 

confirm the differences between the clusters formed by hierarchical and non-hierarchical clustering 

algorithms. The optimal number of clusters in MS, considering the Prec, Tmax and Tmin variables is four, 

due to the difference detected between these clusters and since the identification of four clusters by the 

hierarchical method was the most consistent. The seasonal cycle of precipitation and temperature for each 

cluster represents clearly that the clustering procedure results in climatically distinct clusters for the variables. 

For the hierarchical cluster analysis, the cluster 4 had higher amount of precipitation and lower temperatures 

(Tmin and Tmax). The cluster 3 had the higher Tmax and Tmin. The clusters 3 and 1 had the lower amount 

of precipitation, without significant difference between them. The cluster 2 had intermediate values of 

precipitation and temperatures. For the non-hierarchical cluster analysis, the amount of precipitation was 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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statistically equivalent in clusters 2 and 3 and greater in cluster 1. The Tmax and Tmin were higher in cluster 

2, intermediate in cluster 3 and lower in cluster 1. The two algorithms (hierarchical and non-hierarchical) 

determined clusters with particularities in terms of amount of precipitation and temperatures that differed 

statistically from each other. 

Table 1. Wilcoxon-Mann-Whitney statistical test for cluster analysis results using either hierarchical or non-hierarchical 
clustering algorithms for precipitation, maximum and minimum temperature. 

Hierarchical Tmin Tmax Prec 

Cluster 1 20.34 b 28.65 b 1345.89 c 

Cluster 2 19.65 c 27.65 c 1433.71 b 

Cluster 3 21.82 a 30.22 a 1357.45 c 

Cluster 4 18.89 d 26.62 d 1554.72 a 

Non-hierarchical Tmin Tmax Prec 

Cluster 1 18.94 c 26.71 c 1549.49 a 

Cluster 2 21.62 a 30.01 a 1353.63 b 

Cluster 3 19.84 b 27.94 b 1399.99 b 

*Means with similar lowercase letter in the column (groups) do not differ among themselves as indicated by the 
Wilcoxon-Mann-Whitney test (5% probability), for each clustering algorithms. 

Figure 4 presents the spatial disposition of the CA results for hierarchical (Figure 4 a, c and e) and non-

hierarchical (Figure 4 b, d and f) clustering algorithms, considering the digital elevation model (Figure 4 a and 

b), the Köppen climate classification (Figure 4 c and d) and the biomes (Figure 4 e and f) in MS. Considering 

these factors (orography, climate and biomes) and spatial distribution outcome of each methodology for 

clustering (hierarchical and non-hierarchical), the results highly indicates that the best data stratification was 

obtained when four homogeneous regions illustrating the spatial distribution of the Tmax, Tmin and Prec in 

the MS were composed. These four clusters, formed by hierarchical technique followed by the Elbow method 

for choosing the optimum number of clusters analysis, can be strongly distinguished according to their 

altitude, climatic classification and biome. Thus, the discussion of the spatial arrangement of the clusters will 

be made based on these four groups. 

Table 2 presents the Tmax, Tmin and Prec statistical values of position and dispersion in each of the 

clusters. The standard deviation (SD) was reduced when was computed for each of the clusters, compared 

to the SD of MS state, an interesting and important point for present and future planning, management and 

activities related to economic, agricultural, engineering and environmental areas [8,9,18]. 

Cluster 1 (C1) is comprised of 17 municipalities which mainly belongs to the Cerrado biome and its 

transition with Atlantic Forest. The group includes 3 climatic types, all of them with tropical characteristics 

(“Af”, “Am”, and “Aw”). The altitude ranges from 132 m to 658 m. The climatic characteristic of C1 is 

intermediary maximum and minimum temperatures with the lowest annual totals precipitated. The 

longitudinal profile of C1 corresponds to the profile of precipitation in dry season, showing a subdivision that 

separates the transition months (April and May, September and October) at the beginning and end of the 

season from the dry months (June, July and August), with higher total precipitates in this period [8]. 

Cluster 2 (C2) is comprised of 26 municipalities, with greater number of weather stations in Atlantic 

Forest and in high altitudes (from 276 to 712 m) in Cerrado. The main climate in C2 is the tropical monsoon 

(“Am”). Tmax and Tmin are low compared to other clusters (excluding cluster 4) and had the second major 

annual precipitation. 

Cluster 3 (C3) surrounds the Pantanal in the eastern portion. It is a region with the lowest total 

precipitates during the driest months (from April to September) but includes areas with a large volume of rain 

during the rainiest months (from October to March). This makes this cluster the second highest total annual 

precipitation. In addition, C3 has the lowest altitudes, in a transition to a very characteristic physiognomy like 

the Pantanal, the largest floodplain in the world. The predominant climate of C3 is Am, always in transition 

with “Aw” climate (Figure 4). 

The most concise cluster in area is Cluster 4 (C4), located in the southern region of the state, in the 

Atlantic Forest biome, characterize by “Cfa” climate and altitudes ranging between 324 to 786 meters. C4 

presents the lowest Tmax and Tmin among the groups and the highest total precipitates during the year. 

During the driest months of the year (between April to September), the precipitated totals reach up to 7 times 

higher than that observed in the northern region of the state [8,23]. 
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Figure 5 displays the Pearson's correlation (r) between the variables for the entire series (Tmin, Tmax 

and Prec), for each cluster. The groups demonstrated different spatial behavior. In C1, the high correlation 

observed between the latitude and Tmin, indicating higher minimal temperature in weather stations in north 

of MS state. In C2 and C4, the positive correlations between latitude to Tmin, Tmax and Prec, indicate that 

the weather stations on north, has lower values of Tmax, Tmin and Prec. In C3, the strong negative 

correlations between the longitude to Tmin, Tmax and altitude were observed, indicating a longitudinal 

gradient with higher temperatures in the Pantanal region. Likewise, the orographic effect, where air masses 

are forced to flow over high topography, on Tmax promotes lower temperatures in the mountains of MS. 

 

 
 

Figure 3. Notch boxplot for cluster results using hierarchical (a, c and e) and non-hierarchical (b, d and f) clustering 
algorithms for precipitation, maximum and minimum temperatures. 

The clustering and the Pearson correlation analyses show that beyond the tropical characteristics of MS 

(attitude distribution), altitude is among the physiographic factors, as it is effective in contributing to higher 

precipitation totals and its observed influence on the precipitation resembles results obtained in previous 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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studies conducted in other Brazilian states [8,23,38,39,40]. The topographic alignment, arranged in the 

longitudinal direction (NE - SW), shows a clearly defined morphological characteristics: the plain and the 

plateau. This arrangement has a marked influence on rainfall behavior in rainfall groups and meteorological 

systems operating in MS [41] and at the border of C2 and C4 (Figure 4). 

Another aspect refers to the fact that the state is at the confluence of the main active meteorological 

systems that define the rainfall of the Midwest [41], having more than one type of rainfall regime, as identified 

in this study. The atmospheric circulations that affect it most have a tropical and extratropical origin, being 

influenced by local warming, moisture transport from northern South America (SA), Frontal Systems (FS) and 

dry air masses of the subtropical South Atlantic region [23,41]. 

 
Figure 4. Spatial arrangement of cluster analysis using hierarchical (a, c and e) and non-hierarchical (b, d and f) 
clustering algorithms for precipitation, maximum and minimum temperatures, considering their spatial distribution above 
the digital elevation model (a and b), the Köppen climate classification (Figure 4c and d) and the biomes (Figure 4e and 
f) in Mato Grosso do Sul. 

The annual total precipitation during the year presents a distribution of a rainier nucleus south of MS, 

with a decrease from east to west. At the extreme west of MS, the regime falls to 1,200 mm in the Pantanal, 

and in the southern region, where the highest values are 1,660 mm. However, these precipitations are not 

evenly distributed throughout the year. In almost every region, more than 70% of the total rainfall accumulated 

during the year is precipitated from November to March, and from November to January [8,23,41]. 

 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Table 2. Statistical significance indicating the position and dispersion by the comparison of precipitation (Prec), 
maximum and minimum temperature (Tmax and Tmin, respectively) of the clusters formed by hierarchical clustering 
algorithm. 

Cluster Climatic variable Average SD Minimum Maximum 

Cluster 1 

Tmin (°C) 20.34 0.49 19.06 21.16 

Tmax (°C) 28.65 0.51 28.11 29.82 

Prec (mm) 1345.89 52.97 1224.30 1432.40 

Cluster 2 

Tmin (°C) 19.65 0.43 19.06 20.42 

Tmax (°C) 27.65 0.35 27.17 28.15 

Prec (mm) 1433.71 48.66 1354.10 1548.20 

Cluster 3 

Tmin (°C) 21.82 0.56 20.71 22.77 

Tmax (°C) 30.22 0.52 29.53 30.88 

Prec (mm) 1357.45 88.66 1222.90 1519.10 

Cluster 4 

Tmin (°C) 18.89 0.33 18.48 19.51 

Tmax (°C) 26.62 0.43 25.91 27.39 

Prec (mm) 1554.72 57.38 1483.10 1684.80 

MS state 

Tmin (°C) 20.04 1.11 18.48 22.77 

Tmax (°C) 28.12 1.33 25.91 30.88 

Prec (mm) 1429.32 100.56 1222.90 1684.80 

SD is the standard derivation. 

The November to January quarter is generally rainier with an average of 45-55% of the annual total rain. 

By contrast, winter is excessively dry. At this time of the year, rains are exceedingly rare, with an average of 

4-5 days of occurrence of this phenomenon per month, being rarer in the western part of MS, where at least 

one month does not register even one rainy day. The dry season happens in the winter quarter, typically 

during June-July-August. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Figure 5. Entire Pearson’s correlation coefficients (r) between climatic and geographical variables for clusters 1-4 

(Cluster 1, Cluster 2, Cluster 3 and Cluster 4). Blue and red color indicates positive and negative correlation, 

respectively. Color saturations reflect the magnitude of correlation. 

Owing to MS state latitudinal locations, it is characterized by having transitional regions between warm 

low-latitude climates and temperate-type mid-latitude climates [41]. MS is affected by most of the synoptic 

systems that reach the south of the country, with some differences in system intensity and seasonality. 

According to [42], inverted troughs act mainly during winter, causing moderate weather conditions mainly in 

MS. Upper Tropospheric Cyclonic Vortices (UTCV) from the Pacific region are organized with intense 

convection associated with instability caused by subtropical jet. Prefrontal instability lines generated from the 

association of large-scale dynamic factors and mesoscale characteristics are responsible for intense 

precipitation [43]. 

Especially over MS state, the Bolivia’s High (BH), generated from the strong convective heating (release 

of latent heat) from the atmosphere during the summer months of South Hemisphere (SH) [44], is considered 

as a typical semi-stationary system of region. MS state is characterized by the performance of systems that 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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associate characteristics of tropical systems with typical systems of medium latitudes. During the months of 

greatest convective activity, the South Atlantic Convergence Zone (SACZ) is one of the main phenomena 

that influence the rainfall regime of these Regions [45,46]. The fact that the cloud and rainfall band remain 

semi-stationary for days at a time favors the occurrence of flooding in the affected areas. 

The averages of Tmax and Tmin in the MS state are high during spring-summer, with September and 

October being the warmest months (averages above 23°C), and mild in autumn-winter, but rarely below 18°C. 

during June and July, the months with the lowest thermal averages, the averages of Tmax and Tmin are 

between 18°C to 21°C [24, 47]. However, this monthly spatial variation in temperature is not homogeneous 

in the state, as well as the precipitation, as reported by [8,23,41,47]. The average annual temperature values 

recorded lead to the understanding that the spatial and seasonal variation of the climate variable follows the 

characteristics of the groups in MS state. The highest thermal averages are observed between October to 

March, which corresponds to summer, in the domain of tropical climates in the SH, with October showing the 

highest averages, since this is characterized by the transition between the dry and rainy periods [24]. Thus, 

changes in atmospheric circulation patterns, high evapotranspiration rates, low average wind speeds, and 

precipitation, such as low air humidity, favor rising temperatures, which indicates an early summer. Additional 

analysis done from temperatures is that of the observed thermal amplitude between months with higher and 

lower temperatures, showing variation of 10°C on average [30], with low altitude areas having higher average 

and high-altitude areas having lower average of Tmax and Tmin [8,23,41]. 

The topographic distribution in MS state is irregular with high elevation in its east part and it was well 

characterized by a temperature gradient, from maximum in east portion of the MS state, to minimum in west. 

This defined the C3, in Pantanal region. The highest altitudes in the MS state are in the longitudinal direction, 

from 56 to 52 degrees long in the south, the northeast direction of the MS state. It influences the C4 and C2, 

with lower Tmax and Tmin and higher Prec, and the C1 with lower Prec. Theses clusters have weather 

stations in different areas in MS state (Figure 4).  

The latitudinal pattern was effective in the Tmax and Tmin dynamics of the state in most of the clusters. 

The least influence on the latitude was observed in C1, with an intermediate maximum and minimum 

temperature in the state, with its pattern best described by low precipitation. In C2, C3 and C4 regions, the 

south of the state had the lowest temperatures, due to the influence of higher altitudes, FS, polar masses 

and other extratropical systems [8,41]. 

CONCLUSION 

From the results obtained in this study, it can be concluded that hierarchical cluster analysis and elbow 

method for the optimal number of clusters was the most suitable and satisfactory and were capable of training 

and validating climate homogeneous regions in Mato Grosso do Sul state. The efficient application of these 

methodologies is confirmed by the delimitation of four distinct clusters (climate homogeneous regions), 

consistent with rainfall heights and temperatures (maximum and minimum) recorded and geographical 

characteristics as topography, in the state of Mato Grosso do Sul. 

The climatological study of the homogeneous regions made the knowledge of the rainfall/thermal 

structure of the regions viable, enabling more targeted research to specific areas of the Mato Grosso do Sul 

state. The same region, with nuclei located at different parts of the state, confirmed that the hypothesis of the 

physical approximation guarantees climatic similarity between the meteorological stations, showed the 

determining influence of the topographic structure, latitude, longitude and altitude of the passage variations 

of the mass systems, air and front formation. 

Rainfall and temperature in Mato Grosso do Sul is influenced by weather systems that determine different 

rainfall patterns in the state. The determination of these homogeneous regions, besides contributing to the 

understanding of climate variation in this region, can be useful as a support tool for the management and 

planning of water resources in the state of Mato Grosso do Sul, as an agricultural state. 
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APENDIX 

Table A1. Weather station in Mato Grosso do Sul, latitude (º), longitude (º), altitude (m) and their average and standard 
derivation for precipitation, minimum and maximum temperature. 

City Lat (°S) Lon (°W) Altitude (m) Tmin (°C) Tmax (°C) Precip (mm) 

Água Clara -20.45 -52.88 303 20.42 ± 2.89 28.52 ± 8.48 1398.6 ± 78.41 

Angélica -22.15 -53.77 358 19.58 ± 2.84 27.62 ± 8.31 1354.1 ± 93.76 

Aparecida do 
Taboado 

-20.09 -51.09 392 20.64 ± 2.61 28.4 ± 8.53 1295.6 ± 102.97 

Bataguassu -21.71 -52.42 329 20.03 ± 2.83 28.16 ± 8.44 1340.9 ± 85.66 

Bataiporã -22.30 -53.27 334 19.36 ± 2.88 27.4 ± 8.28 1374 ± 87.18 

Bonito -21.12 -56.48 315 19.61 ± 2.83 28.24 ± 8.4 1360.5 ± 81.84 

Brasilândia -21.26 -52.04 343 20.42 ± 2.75 28.3 ± 8.5 1320.4 ± 89.46 

Corguinho -19.83 -54.83 320 21.51 ± 2.29 29.57 ± 8.87 1369.7 ± 82.88 

Coxim -18.51 -54.76 238 22.4 ± 2.33 30.29 ± 9.08 1350.6 ± 60.18 

Dois Irmãos do 
Buriti 

-20.68 -55.30 320 21.46 ± 2.53 29.83 ± 8.91 1355.9 ± 82.86 

Guia Lopes da 
Laguna 

-21.46 -56.11 272 20.2 ± 2.61 28.48 ± 8.55 1360.5 ± 69.91 

Ivinhema -22.30 -53.82 362 19.13 ± 2.94 27.2 ± 8.2 1354.1 ± 94.96 

Jardim -21.48 -56.14 259 20.2 ± 2.61 28.48 ± 8.55 1360.5 ± 66.33 

Nova Alvorada 
do Sul 

-21.47 -54.38 407 20.07 ± 2.7 28.11 ± 8.41 1353.2 ± 107.2 

Nova Andradina -22.23 -53.34 380 19.56 ± 2.84 27.59 ± 8.28 1374 ± 99.85 

Pedro Gomes -18.10 -54.55 282 21.63 ± 2.22 29.75 ± 8.94 1393.1 ± 72.4 

Rio Negro -19.45 -54.99 279 21.53 ± 2.3 29.53 ± 8.85 1330.3 ± 71.6 

Rio Verde de 
Mato Grosso 

-18.92 -54.84 330 21.86 ± 2.32 29.59 ± 8.87 1350.6 ± 85.6 

Rochedo -19.95 -54.89 260 21.51 ± 2.29 29.57 ± 8.87 1369.7 ± 66.37 

Selvíria -20.37 -51.42 357 20.95 ± 2.68 28.72 ± 8.62 1295.6 ± 93.23 

Taquarussu -22.49 -53.35 276 19.36 ± 2.88 27.4 ± 8.28 1374 ± 71.19 

Três Lagoas -20.75 -51.68 319 20.71 ± 2.66 30.77 ± 2.67 1229.8 ± 83 

Alcinópolis -18.32 -53.71 443 20.42 ± 2.11 28.15 ± 8.49 1548.2 ± 117.13 

Amambai -23.10 -55.23 480 18.59 ± 2.97 26.32 ± 7.95 1653.7 ± 127.74 

Caarapó -22.63 -54.82 471 18.73 ± 2.97 26.74 ± 8.03 1566.3 ± 125.19 

Cassilândia -19.11 -51.73 470 19.3 ± 2.56 27.39 ± 8.19 1586.6 ± 124.8 

Coronel 
Sapucaia 

-23.27 -55.52 510 18.97 ± 3 26.55 ± 8.09 1556.4 ± 135.97 

Iguatemi -23.68 -54.56 342 18.66 ± 3.13 26.49 ± 8.09 1559.5 ± 89.55 

Inocência -19.73 -51.93 502 19.97 ± 2.5 27.65 ± 8.29 1475.6 ± 133.55 

Juti -22.86 -54.60 373 18.84 ± 3.04 26.88 ± 8.16 1566.3 ± 98.06 

Laguna Carapã -22.55 -55.15 509 18.73 ± 2.97 26.74 ± 8.03 1605.6 ± 135.71 

Maracaju -21.61 -55.17 384 19.87 ± 2.65 27.86 ± 8.31 1543.7 ± 100.89 

Paranhos -23.89 -55.43 429 19.14 ± 3.1 26.97 ± 8.36 1573.2 ± 113.48 

Tacuru -23.63 -55.02 372 18.57 ± 3.08 26.16 ± 7.97 1573.2 ± 97.88 

Antônio João -22.19 -55.95 681 19.43 ± 2.64 27.14 ± 8.14 1544.5 ± 183.22 

Aral Moreira -22.93 -55.64 609 18.71 ± 2.81 26.17 ± 7.91 1530.9 ± 163.46 

Bandeirantes -19.92 -54.36 629 20.12 ± 2.28 27.97 ± 8.37 1435.8 ± 168.66 

Campo Grande -20.44 -54.65 712 19.89 ± 2.34 27.49 ± 8.21 1422.3 ± 191.73 

Chapadão do Sul -18.79 -52.62 786 19.48 ± 2.35 27.3 ± 8.16 1684.8 ± 212.32 
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Costa Rica -18.54 -53.13 641 19.51 ± 2.15 26.85 ± 8.06 1590.8 ± 172.2 

Douradina -22.04 -54.61 553 19.72 ± 2.91 27.98 ± 8.41 1455.8 ± 147.64 

Jaraguari -20.14 -54.40 589 20.12 ± 2.28 27.97 ± 8.37 1460.7 ± 157.59 

Ponta Porã -22.54 -55.73 755 18.48 ± 2.76 25.91 ± 7.76 1530.9 ± 203.98 

São Gabriel do 
Oeste 

-19.40 -54.57 658 20.26 ± 2.27 28.27 ± 8.47 1330.3 ± 176.65 

Anastácio -20.48 -55.81 160 21.38 ± 2.74 30.33 ± 9.05 1293.3 ± 39.08 

Aquidauana -20.47 -55.79 147 21.38 ± 2.74 30.33 ± 9.05 1293.3 ± 35.59 

Bela Vista -22.11 -56.52 180 20.45 ± 2.79 28.71 ± 8.64 1333.3 ± 44.68 

Bodoquena -20.54 -56.72 132 20.53 ± 2.89 29.37 ± 8.73 1293.3 ± 31.73 

Caracol -22.01 -57.02 212 20.48 ± 2.95 28.53 ± 8.59 1224.3 ± 53.4 

Corumbá -19.01 -57.65 118 22.34 ± 2.91 30.88 ± 9.19 1519.1 ± 27.8 

Ladário -19.00 -57.60 114 22.34 ± 2.91 30.88 ± 9.19 1519.1 ± 26.76 

Miranda -20.24 -56.38 125 21.94 ± 2.86 30.71 ± 9.16 1222.9 ± 29.68 

Nioaque -21.14 -55.83 200 20.82 ± 2.73 29.82 ± 8.92 1346.1 ± 50.01 

Porto Murtinho -21.70 -57.88 90 22.77 ± 2.23 30.64 ± 9.19 1306.2 ± 20.65 

Anaurilândia -22.19 -52.72 312 19.81 ± 2.86 27.91 ± 8.37 1426.6 ± 81.02 

Camapuã -19.53 -54.04 409 20.02 ± 2.39 28.06 ± 8.39 1435.8 ± 107.78 

Deodápolis -22.28 -54.16 418 19.13 ± 2.94 27.2 ± 8.2 1412.3 ± 110.44 

Dourados -22.22 -54.81 430 19.26 ± 2.99 27.55 ± 8.22 1455.8 ± 113.7 

Eldorado -23.79 -54.28 342 18.63 ± 3.19 26.18 ± 8.08 1483.6 ± 89.58 

Fátima do Sul -22.37 -54.51 352 19.06 ± 2.99 27.17 ± 8.18 1455.8 ± 92.21 

Figueirão -18.68 -53.64 396 20.42 ± 2.11 28.15 ± 8.49 1497.4 ± 104.14 

Glória de 
Dourados 

-22.42 -54.23 400 19.13 ± 2.94 27.2 ± 8.2 1412.3 ± 105.46 

Itaporã -22.08 -54.79 390 19.26 ± 2.99 27.55 ± 8.22 1455.8 ± 102.65 

Itaquiraí -23.47 -54.19 340 18.82 ± 3.12 26.66 ± 8.14 1483.1 ± 88.96 

Japorã -23.89 -54.40 357 18.63 ± 3.19 26.18 ± 8.08 1483.6 ± 93.72 

Jateí -22.48 -54.31 396 19.06 ± 2.99 27.17 ± 8.18 1412.3 ± 104.36 

Mundo Novo -23.94 -54.27 324 18.63 ± 3.19 26.18 ± 8.08 1483.6 ± 84.61 

Naviraí -23.07 -54.19 362 18.98 ± 3.01 27.01 ± 8.2 1483.1 ± 94.99 

Novo Horizonte 
do Sul 

-22.67 -53.86 320 19.13 ± 2.94 27.2 ± 8.2 1434.3 ± 83.36 

Paranaíba -19.68 -51.19 374 20.11 ± 2.6 28.06 ± 8.41 1418.7 ± 98.09 

Ribas do Rio 
Pardo 

-20.44 -53.76 369 19.53 ± 2.76 27.37 ± 8.09 1442.2 ± 96.84 

Rio Brilhante -21.80 -54.55 312 19.72 ± 2.91 27.98 ± 8.41 1424.9 ± 81.02 

Santa Rita do 
Pardo 

-21.30 -52.83 360 20.05 ± 2.85 27.96 ± 8.38 1420 ± 94.23 

Sidrolândia -20.93 -54.96 484 20.49 ± 2.41 28.35 ± 8.47 1432.4 ± 128.43 

Sonora -17.58 -54.76 442 22.56 ± 2.08 30.56 ± 9.21 1458.1 ± 116.35 

Terenos -20.44 -54.86 437 21.16 ± 2.28 29.09 ± 8.73 1422.3 ± 115.28 

Vicentina -22.41 -54.44 368 19.06 ± 2.99 29.57 ± 3.08 1412.3 ± 96.77 
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