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Abstract:

Land surface temperature (LST) acquired from remote sensing observations is essential to monitor surface energy 
and water exchange processes at the land-atmosphere interface. Most LST retrieval methodologies are developed 
focusing on Northern hemisphere. Consequently, Southern hemisphere has a great need for investigating the 
performance of LST retrieval algorithms already consolidated in the literature. In this paper, we compared a Split-
window (SW) and a Single-channel (SC) method to retrieve LST from Landsat 8 OLI/TIRS images in a dune field, 
Southern Brazil. To validate the results, the Atmospheric Correction Parameter Calculator (ACPC) tool and Radiative 
Transfer Equation (RTE) were used. Results demonstrated that both methodologies are in accordance with the RTE, 
despite they overestimated the LST. Analysis of variance (ANOVA) indicated that the means are not statistically 
significant (0.05 level). The correlations between LST retrieved and RTE were strong, producing R² of 0.984 and 
0.973 for the SW and SC, respectively, and RMSE values of 1.18 and 1.6. SW also exhibited the best values of MSD 
(±0.983) and Bias (0.773), thus reinforcing its superior performance. SW can be applied with an accuracy of 1.18 K 
in Southern Brazil, without needing complex modeling or specific radiosonde.
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1. Introduction

Information about land surface temperature (LST) acquired from remote sensing satellite observations 
is very important to monitor surface energy and water exchange processes at the land-atmosphere interface 
(Zhao et al. 2019). In addition, it is a key variable to be retrieved from the Thermal Infrared (TIR) data because is 
widely used in many scientific fields including evapotranspiration, climate change, hydrological cycle, vegetation 
monitoring, urban climate and environmental studies, among others (Jiménez-Muñoz et al. 2008; Cristóbal et al. 
2009; Li et al. 2013; Grondona et al. 2016; Ndossi and Avdan, 2016). LST also helps to analyze the climate change 
such as global warming (Chen et al. 2016) and thus is selected as one of Essential Climate Variables by the World 
Meteorological Organization (WMO) (Kim et al. 2019).

The LST variable reflects the amount of radiation emitted from the surface and sub-surface of the earth, 
and the exchange of energy between the earth surface and atmosphere (Weng et al. 2019). Remote sensing in 
the TIR region provides an opportunity to obtain information about this variable. In this context, several efforts 
have been devoted to establishing methods to retrieve the LST from remote sensing data. These algorithms can be 
roughly grouped into three categories according to Li et al. (2013) and Du et al. (2015): (i) single-channel (SC) (ii) 
multichannel, and (iii) multi-time methods. The split-window (SW) methods are included in the group (ii). 

The SW methods use two TIR bands typically located in the atmospheric window between 10 and 12 μm. The 
basis of the technique is that the radiance attenuation for atmospheric absorption is proportional to the radiance 
difference of simultaneous measurements at two different wavelengths (Jiménez-Muñoz et al. 2014). 

In contrast, SC methods use the radiance measured by the sensor in a single channel and corrects the radiance 
for residual atmospheric attenuation using atmospheric transmittance/radiance code that requires input data on 
the atmospheric profiles. These profiles are obtained by launching in situ radiosondes. Then, the LST is retrieved 
from the radiance measured in this channel by inverting the Radiative Transfer Equation (RTE). 

Nevertheless, atmospheric profiles data hardly ever are available for specific conditions in the real world 
(Wang et al. 2015) and to be suitable they need to be launched simultaneously with the satellite overpass (Sobrino 
et al. 2004). In order to avoid the radiosonde dependence SC algorithms were developed in the last three decades 
(Qin et al. 2001; Jiménez-Muñoz and Sobrino 2003; Cristóbal et al. 2009; Jiménez-Muñoz et al. 2014; Wang et al. 
2015; Cristóbal et al. 2018).

Given that the atmosphere is the main problem in the TIR remote sensing, to acquire reliable estimates of LST 
from satellite measurements, atmospheric, angular and emissivity effects must be compensated (Li et al. 2013). SW 
methods are more popular due to its simplicity and precision. However, SC methods may be more accurate as long as 
they have sufficient data relative to the atmosphere state (Dash et al. 2002) and robust assumptions based on physics. 

The Landsat series of satellites has been one of the major contributing factors in the development of global-
scale earth systems science research (Malakar et al. 2018). For Landsat 4, Landsat 5, and Landsat 7 data, there was 
only one thermal infrared channel, and only the SC methods are suitable to derive LST (Zhang et al. 2016; Cristóbal et 
al. 2018). On the other hand, Landsat 8 has two spectrally adjacent channels in the TIR region (Jiménez-Muñoz et al. 
2014), thus allowing to apply both SW and SC methods.

If radiosonde data is unavailable, in order to apply SC methods an option currently for Landsat series of 
satellites is to use the freely online tool Atmospheric Correction Parameter Calculator (ACPC) (https://atmcorr.gsfc.
nasa.gov/) developed by Barsi et al. (2005) that creates interpolated vertical profiles through the National Center for 
Environmental Prediction (NCEP) reanalysis data (Zhang et al. 2016; Cristóbal et al. 2018).

Differently from the North, the South hemisphere (specially Brazil) has a big gap in LST field data, which makes 
the field validation of satellite measurements a challenge. As in situ data are unavailable, the web-based ACPC 
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becomes very useful tool for the atmospheric correction of Landsat TIR data, since it can achieve satisfactory results 
in retrieving LST (Barsi et al. 2005; Jiménez-Muñoz et al. 2010). Therefore, some studies have been using the ACPC 
as a reference (Sánchez et al. 2009; Weng and Fu 2014; Zhang et al. 2016; Bisquert et al. 2016; Sheng et al. 2017).

Most LST retrieval methodologies are developed and validated focusing on North hemisphere. As a result, 
Southern hemisphere has a great need for investigating the performance of LST retrieval algorithms already consolidated 
in the literature (Käfer et al. 2019). In this paper, we aimed to compare a SW and a SC method to retrieve LST from 
Landsat 8 OLI/TIRS images. To validate the results obtained, the ACPC tool (Barsi et al. 2005) was used.

2. Material and methods

2.1 Theoretical Background 

The land surface is not a perfect blackbody for thermal emittance. Therefore, the LST retrieval from the 
observed thermal radiance in space is more complicated. The atmosphere and ground effects must be considered 
(Li et al. 2013; Wang et al. 2015). 

For a cloud‐free atmosphere under local thermodynamic equilibrium, the thermal radiance observed at the top 
of the atmosphere (TOA) can be expressed according to the RTE, which represents the basis of the SC methods (Li et al. 
2013; Zheng et al. 2019). Thus, RTE is applied to a certain sensor channel and wavelength interval according to 

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠,𝜆𝜆 = [𝜀𝜀𝜆𝜆𝐵𝐵𝜆𝜆(𝑇𝑇𝑠𝑠) + (1 − 𝜀𝜀𝜆𝜆)𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎,𝜆𝜆
↓ ]𝜏𝜏𝜆𝜆 + 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎,𝜆𝜆

↑       (1)

where Lsen is the at-sensor radiance in Wm−2 µm−1 sr−1, ε is the land surface emissivity (LSE) at a certain 
wavelength interval λ, Bλ(Ts) is the Planck’s law, L↓ is the downwelling atmospheric radiance in Wm−2 µm−1 sr−1, L↑ 
is the upwelling atmospheric radiance in Wm−2 µm−1 sr−1, and τ is the atmospheric transmittance.

In most of the conditions, the specific data of study areas during the satellite overpass time are missing, 
the Atmospheric Correction Parameter Calculator (Barsi et al. 2005) has been successfully used to simulate the 
atmospheric conditions (Jiménez-Muñoz et al. 2010; Ndossi and Avdan, 2016; Zhang et al. 2016). Thus, with the 
required variables, the land surface radiance, Lλ(Ts) is calculated as

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠,𝜆𝜆(𝑇𝑇𝑇𝑇) =  𝐿𝐿𝜆𝜆− 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎↑
𝜏𝜏𝜀𝜀𝜆𝜆

−  1 − 𝜀𝜀𝜆𝜆
𝜀𝜀𝜆𝜆

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎↓      (2)

Afterwards, through the inversion of Planck’s equation, the LST is obtained

𝐵𝐵𝜆𝜆(𝑇𝑇𝑇𝑇) =
𝐶𝐶1

𝜆𝜆5[exp (𝐶𝐶2𝜆𝜆𝜆𝜆) − 1]
      (3)

where Bλ(T) is the spectral radiance (W m−2 μm−1 sr−1) of a black body at temperature T in kelvin and wavelength 
λ in μm; C1 and C2 are physical constants (C1=1.191×108 Wμm4 sr−1 m−2, C2=1.439×104 μm·K).

2.2 Pseudo-invariant target

The study area is a dune field located in the North Coast of Rio Grande do Sul state, Brazil (Figure 1). The site 
has a large stock of fine quartz sand (125 to 250 μm), composed by quartz (99.53%) and heavy minerals (0.47%), 
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with grains varying among sub-rounded (68%), rounded (18%), subangular (14%) (Käfer et al. 2019). The dunes are 
arranged side by side and are moving by the action of the wind, mobilizing the sandy particles.

Figure 1. Dune area location in Southern Brazil. Dune mask shown by the yellow line. Landsat 8 OLI – color 
composite RGB654 (USGS, 2019). 

In mineral mapping studies, the behavior of minerals and the observed spectral features have been found 
to be correlated, especially for silicates. These features are related to the differences in the SiO content in the soil, 
which has minimal emissivity and therefore maximum absorption (reststrahlen effect). 

This behavior is observed in silicates, such as quartz, having reststrahlen effects observed around 8,2µm and 9,3µm 
(Hook et al. 1998). Consequently, TIR region (8µm-14µm) is effective for this kind of study, in which the material emissive 
properties are predominant relative to its reflective properties (Hook et al. 2005; Li et al. 2013; Grondona et al. 2019).  

The site is a very homogeneous test area, mostly because it is considered a pseudo-invariant target, and 
therefore suitable for the terrestrial calibration of LST retrieval by remotely sensed data (Hulley and Hook 2009). The 
annual precipitation is 1,323 mm, the annual evaporation is 1,135 mm and the average humidity is 80%, according 
to Tramandaí Meteorological station, located around 6 Km away from the studied area (Käfer et al. 2019).

2.3 Data acquisition

Nine Landsat 8 OLI/TIRS scenes were downloaded over the study area with clear-sky conditions from the US 
Geological Survey website <(http://earthexplorer.usgs.gov/)> in Level 1 product (Table 1). Landsat Level 1 data are 
radiometric, geometric and terrain corrected. To obtain the normalized difference vegetation index (NDVI), which is 
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used in the LSE derivation, Landsat 8 OLI surface reflectance product was also downloaded from the Landsat data 
collection (see section 2.4.6).

Table 1. Information of the Landsat 8 scenes used in the study.

Acquisition Date GMT Time Path Row Sun Elevation
20 May 2019 13:11:53.75 220 81 31.55°

01 March 2019 13:11:56.99 220 81 50.24°
28 January 2019 13:12:02.98 220 81 56.07°

27 December 2018 13:12:08.78 220 81 60.71°
11 December 2018 13:12:08.72 220 81 62.27°
09 November 2018 13:12:12.15 220 81 61.43°
06 September 2018 13:11:51.21 220 81 42.59°

18 June 2018 13:11:11.95 220 81 27.99°
17 May 2018 13:11:15.28 220 81 32.01°

The Landsat project provides an opportunity for the LST retrieval because it has a relatively long data record 
period, with the launch of Landsat 3 in 1978. From the Multispectral Scanner (MSS) of Landsat 3 to the Thematic 
Mapper (TM) of Landsat 4 and 5, and following by the Enhanced Thematic Mapper Plus (ETM+) of Landsat 7, there 
was only one thermal infrared channel available (Huang et al. 2010).

Landsat 8 was launched as the Landsat Data Continuity Mission on 11 February 2013. The satellite carries two 
push-broom instruments, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) (Duan et al. 2015). 
OLI has eight channels located from the visible to the short-wave infrared region, whereas TIRS has two channels in 
the thermal infrared region of the electromagnetic spectrum (see Table 2). Landsat-8 OLI and TIRS data products are 
distributed as quantized calibrated digital numbers (DNs) in 16-bit unsigned integer format (Chatterjee et al. 2017).

The two spectrally adjacent Landsat 8 bands were designed to allow the users to apply SW LST retrieval methods. Due 
to larger calibration uncertainty caused by a significant stray light problem in TIRS band 11, it was not recommended for LST 
retrieval by SW methods for a long time (Montanaro et al. 2014; Yu et al. 2014; Du et al. 2015). Meanwhile, the researchers 
kept focusing on improving and studying the performance of SC techniques (Jiménez-Muñoz et al. 2014; Wang et al. 2015; 
Cristóbal et al. 2018; Käfer et al. 2019). Currently the issue is already solved and the SW methods are encouraged.

Table 2. Landsat 8 instrument’s technical specifications.

Subsystem Band Wavelength range (µm) Spatial resolution
Aerosol 1 0.435 – 0.451 30 m

Visible and 2 0.452 – 0.512 30 m
Near Infrared 3 0.533 – 0.590 30 m

(VNIR) 4 0.636 – 0.673 30 m
5 0.851 – 0.879 30 m

Short Wave 6 1.566 – 1.651 30 m
Infrared (SWIR) 7 2.107 – 2.294 30 m

Thermal Infrared 10 10.60 – 11.19 100 m
(TIR) 11 11.50 – 12.51 100 m
Pan 8 0.503 – 0.676 15 m

Cirrus 9 1.363 – 1.384 30 m
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For LST retrieval using the SW algorithm, the two thermal available radiance bands were used. In contrast, for the 
application of the SC method the band 10 was chosen as input because it is in a lower atmospheric absorption region 
(high atmospheric transmissivity values) (Jiménez-Muñoz et al. 2014), providing superior results in comparison to 
the band 11 (Yu et al. 2014). The summary steps of the study are shown in the following flowchart (Figure 2).

Figure 2: Flowchart with the main steps of the study.

2.4 LST determination

The SW algorithm applied in this paper was proposed by Jiménez-Muñoz et al. (2014) based on the 
mathematical structure proposed by Sobrino et al. (1996). The SC algorithm is based on the RTE (Eq. 1) and was 
originally developed by Jiménez-Muñoz et al. (2003) and improved in Cristóbal et al. (2018) by adding a new 
parameter to the model: the atmospheric mean temperature (Ta). This section will present the steps required to 
determinate LST from Landsat 8 images using both algorithms. 

2.4.1 Conversion of Digital Numbers to Radiance

The thermal data in satellite imagery sensors are stored in DNs, which are used to represent pixels that have 
not yet been calibrated into meaningful units. They are a representation of different levels of radiance in a raster 
image (Ndossi and Avdan, 2016). Hence, digital number (DN) of the sensor were converted to spectral radiance 
using the following equation

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠,𝜆𝜆 = 𝑀𝑀𝑀𝑀𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴𝐴𝐴      (4)

where Lsen is the top of atmosphere radiance in W/(m².sr.μm); ML is the band-specific multiplicative factor, 
AL is the band-specific additive rescaling factor, and Qcal are the pixel values (DNs). 

2.4.2 Conversion of Radiance to Brightness Temperature

Then next step consists of converting the TIR data to brightness temperature by using
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𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐾𝐾2
ln⁡( 𝐾𝐾1𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 + 1)

      (5)

where Tsen is the satellite brightness temperature in Kelvin, K1 and K2 are the band-specific conversion 
constant taken from the metadata file (K1=774.8853 and K2=1321.0789 for the Landsat 8 band 10; K1=480.8883 
and K2=1201.1442 for the band 11).

2.4.3 SW algorithm

SW algorithms are also called multi-channel methods and use the different absorptions of two TIR channels, 
linearizing or nonlinearizing RTE with respect to the temperature or wavelength (Jin et al. 2015). According to 
Jiménez-Muñoz et al. (2014) the SW algorithm applied in this study is calculated by

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 + 1.378(𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠) + 0.183(𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠)2 − 0.268
+ (54.3 − 2.238 𝑤𝑤)(1 − 𝜀𝜀) + (−129.2 + 16.4 𝑤𝑤)Δε 

    (6)

where Tisen and Tjsen are the at-sensor brightness temperatures at the bands I and j (10 and 11) in Kelvins, ε is 
the mean emissivity, ε = 0.5( εi + εj), Δε is the emissivity difference, Δε =( εi −εj), w is the total atmospheric water 
vapor content (in g·cm−2).

2.4.4 SC algorithm

The single-channel (SC) algorithm applied here is an improved single-channel methodology that has been 
shown superior performance when compared to the classic SC method purposed by Jiménez-Muñoz (2014). The 
method retrieves LST from the following equation

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝛾𝛾 [1
𝜀𝜀 (𝜓𝜓1𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜓𝜓2) + 𝜓𝜓3] + 𝛿𝛿      (7)

Where ε is the land surface emissivity (LSE), γ and δ are variables based on the Planck’s function given by

𝛾𝛾 = {𝐶𝐶2𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠2
[𝜆𝜆

4𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠
𝐶𝐶1

+ 1
𝜆𝜆]}

−1
      (8)

and

𝛿𝛿 = −𝛾𝛾𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠      (9)

Where C1 and C2 are physical constants (given in Eq. 3); λ is the effective wavelength of Landsat 8 band 
10. Cristóbal et al. (2018) demonstrated that ψ1, ψ2, and ψ3 for Landsat-8 TIRS band 10 have a better estimate if 
derived as a function of both w and Ta. Thus, the three said parameters are calculated as follows:

𝜓𝜓1 = −7.2122𝑤𝑤2 + 0.00005𝑇𝑇𝑎𝑎2 − 2.452321𝑤𝑤 − 0.026275𝑇𝑇𝑎𝑎 − 0.00005𝑇𝑇𝑎𝑎2𝑤𝑤 + 0.02317𝑇𝑇𝑎𝑎𝑤𝑤
+ 0.04663𝑇𝑇𝑎𝑎𝑤𝑤2 − 0.00007𝑇𝑇𝑎𝑎2𝑤𝑤2 + 4.47297,      (10)

𝜓𝜓2 = 89.61569𝑤𝑤2 − 0.00038𝑇𝑇𝑎𝑎2 + 106.55093𝑤𝑤 + 0.21578𝑇𝑇𝑎𝑎 + 0.00141𝑇𝑇𝑎𝑎2𝑤𝑤
− 0.78444𝑇𝑇𝑎𝑎𝑤𝑤 − 0.5732𝑇𝑇𝑎𝑎𝑤𝑤2 + 0.00091𝑇𝑇𝑎𝑎2𝑤𝑤2 − 30.37028,      (11)

𝜓𝜓3 = −14.65955𝑤𝑤2 − 0.0001𝑇𝑇𝑎𝑎2 − 79.95838𝑤𝑤 + 0.04181𝑇𝑇𝑎𝑎 − 0.00091𝑇𝑇𝑎𝑎2𝑤𝑤 + 0.54535𝑇𝑇𝑎𝑎𝑤𝑤
+ 0.09114𝑇𝑇𝑎𝑎𝑤𝑤2 − 0.00014𝑇𝑇𝑎𝑎2𝑤𝑤2 − 3.76184.      (12)

2.4.5 Water vapor content

Both SW and SC methods need the water vapor content (w) in the atmosphere as input. Usually we are 
unable to obtain this variable in situ. However, according to Wang et al. (2015) a way of solving this problem is to 
use the air humity (H) and air temperature (Ta) from a meteorological station. 
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The input data required in the methodology were taken from a nearby atmospheric observation station of 
the Brazilian National Institute of Meteorology (INMET) <http://www.inmet.gov.br/portal/>, which is located 6 Km 
away from the study area (station coordinates: 30.010268°; -50.135887° and 5 m a.s.l.). Thus, w in the atmosphere 
column up to satellite altitude can be estimated as

𝑤𝑤 = 𝑤𝑤(0)
𝑅𝑅𝑅𝑅(0)      (13)

where w is the water vapor content (g·cm−2) in the atmospheric column up to the sensor, w(0) is the water 
vapor content (g·cm−2) at the ground of the atmosphere and Rw(0) is the ratio of water vapor content at the first 
layer to the total. The ratio may differ for different atmospheres, with Rw(0) = 0.6834 for tropical atmosphere, Rw(0) 
= 0.6819 and Rw(0) = 0.6593 for subtropical summer and winter atmospheres, respectively, and Rw(0) = 0.6834 
and Rw(0) = 0.6356 for mid-latitude summer and winter atmospheres, respectively (Qin et al. 2001). In this study, 
we used the values for mid-latitude summer and winter according to the image date. Ultimately, the water vapor 
content at the ground is computed as

𝑤𝑤(0) = 𝐻𝐻 ∗ 𝐸𝐸 ∗ 𝐴𝐴
1000      (14)

where H is air humidity (%) at the ground, E is the saturation mix ratio (g/kg) of water vapor and air for a 
specific air temperature and A is the air density (g/m3) at the specific air temperature.

2.4.6 Land surface emissivity estimation

LSE is the ration between radiance emitted by the land surface and the radiance emitted by a black body at 
the same temperature (Li et al. 2013; Rozenstein et al. 2015). Its prior knowledge is necessary in the calculation of 
LST from remotely sensed data. 

An operational way to estimate LSE is using the NDVI threshold method (NDVITHM) (Sobrino et al. 2008). This 
method is based on the principle that there is a relationship between the Normalized Difference Vegetation Index 
(NDVI) and the emissivities of terrestrial materials (Van de Griend and Owe 1993). 

In general, NDVI is considered as one of the most widely used vegetation index. Areas of bare rock, sand 
and soil usually show very low NDVI values (≤0.1). Sparse vegetation such as shrubs, grasslands or senescing crops 
give moderate NDVI values (e.g., 0.2–0.5). High NDVI values (e.g., >0.5–0.9) correspond to dense vegetation cover 
(Chatterjee et al. 2017). 

NDVITHM assumes that the surface is composed only of soil and vegetation. For NDVI values lower than 0.2, 
pixels are entirely of soil and the emissivity of bare soil is assigned. As in this study the region is composed of 99.53% 
quartz according to previous analysis (Käfer et al. 2019), the emissivity attributed to these pixels was based on a 
pure quartz spectrum acquired from the Aster Spectral Library Version 2.0 <http://speclib.jpl.nasa.gov>. 

Afterwards, we weighted the data by the sensor spectral response function (SRF), since it might be a potential 
source of uncertainties in the LSE estimation if it is not considered (Cristóbal et al. 2009; Chen et al. 2016). The 
equation for the SRF is defined as

𝜀𝜀(𝜆𝜆) =
∫ 𝑅𝑅(𝜆𝜆)𝜀𝜀(𝜆𝜆)𝑑𝑑𝑑𝑑𝜆𝜆𝜆𝜆
𝜆𝜆𝜆𝜆

∫ 𝑅𝑅(𝜆𝜆)𝑑𝑑𝑑𝑑𝜆𝜆𝜆𝜆
𝜆𝜆𝜆𝜆

      (15)

where R() is the SRF of the band, given in a discrete form with a finite range, while S and E are the start and the 
end wavelengths of the band. () is the emissivity spectra of the band.

For NDVI values higher than 0.5, the pixel is considered to be fully vegetated, thus assuming the typical 
emissivity value of 0.99 (Sobrino et al. 2008). For NDVI values within the described range (0.2 ≤ NDVI ≤ 0.5) the 
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pixels are considered as mixing pixels, and their emissivity is calculated trough the simplified equation proposed by 
Sobrino et al. (2004)

𝜀𝜀 =  𝜀𝜀𝑉𝑉𝑉𝑉𝑃𝑃𝑉𝑉 + 𝜀𝜀𝑠𝑠(1 − 𝑃𝑃𝑉𝑉) + 𝑑𝑑𝑑𝑑𝑑𝑑      (16)

Where Pv is the vegetation proportion, which means the percentage of the vertical projection of vegetation 
canopy per unit area and can be calculated according Carlson and Ripley (1997) equation. The term dε includes the 
effect of the geometrical distribution of the natural surfaces and the internal reflections (dε=0 for flat surfaces). For 
heterogeneous and rough surfaces, it can reach a value of 2% (Li et al. 2013).

𝑑𝑑𝑑𝑑 = (1 − 𝜀𝜀𝑆𝑆)(1 − 𝑃𝑃𝑉𝑉)𝐹𝐹𝜀𝜀𝑉𝑉      (17)

where F is a shape factor whose mean value, assuming different geometrical distributions, is 0.55.

2.5 Data analysis and validation

Since no in situ measurements for LST at the time of the Landsat 8 data acquisition are available, the RTE (Eq. 1) 
was assumed as ground truth to perform the validation against the algorithms tested. ACPC provides specific atmospheric 
parameters for the Landsat 8 TIRS thermal bands, which are required to solve the RTE. Data from the Tramandaí 
meteorological station were also used as input data in the ACPC to generate the variables: transmittance (τ), 
downwelling (L↓) and upwelling radiance (L↑).

The ACPC tool takes the National Centers for Environmental Prediction modeled atmospheric profiles as 
input to the MODTRAN radiative transfer code (Barsi et al. 2005). Furthermore, studies have reported that ACPC 
validation demonstrated that it can achieve good results in the LST retrieval (Barsi et al. 2005; Jiménez-Muñoz et al. 
2010; Zhang et al. 2016).

Image processing was automated through the development of algorithms in a MATLAB environment. The 
comparisons between the LST retrieved by the algorithms and the ACPC results were performed through an analysis 
of the minimum, maximum and mean values and standard deviation (σ) of LST. The same vector from the dune area 
(Figure 1) was applied to clip all the nine scenes. 

Thereafter, a linear function was applied to fit the data. To evaluate the performance of the functions, the 
coefficient of determination (R²) at 95% probability was used. An assessment was also made by the determination 
of RMSE (Root Mean Square Error), MSD (Mean standard deviation) and Bias. Ultimately, we applied the one-way 
analysis of variance (ANOVA) (Lee and Wang, 2013; Yu et al. 2014) to identify if the results are statistically significant.

3. Results and discussion

The Radiative Transfer Equation - RTE (Eq 1.) was used as reference to validate the data from both algorithms 
SW and SC in this work because to solve it there is a need for information about the atmospheric state at the time 
of the satellite overpass (Sobrino et al. 2004; Li et al. 2013; Meng et al. 2018). In this sense, the web-based ACPC 
is a very useful tool to obtain this kind of information (Zhang et al. 2016), since it allows to acquire the required 
atmospheric parameters in the RTE for each region, time and date. 

As the RTE needs the radiance measured by the sensor from a single band, it is considered a SC method as 
well (Jiménez-Muñoz et al. 2014). We decided to use the radiance measured from TIRS channel 10 in accordance to 
other works (Coll et al. 2012; Yu et al. 2014; Chatterjee et al. 2017). The choice of band 10 is associated to the fact 
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that it is expected that the band 11 has uncertainties for being more affected by the water vapor content (w) in the 
atmosphere and, therefore, more sensitive to errors.

Comparing maximum, minimum and mean values of LST retrieved with the LST retrieved using RTE (Table 3), it is 
seen that both methods have good agreement with the RTE for most images analyzed. The variation between pixels are 
bigger in the hottest temperatures (01 March 2019, 28 January 2019, 27 December 2018 and 11 December 2018). All 
these dates belong to the summer season in the South hemisphere. Since seasonal changes affect the energy balance of 
ecosystems on the earth, variations in the LST behavior among seasons must be constantly investigated (Liu et al. 2017).

Table 3 also shows that the images with the coldest temperatures produced the mean values closer to the 
reference image (RTE). The biggest differences were found in the two December dates of 2018 (summer season), 
which had a difference up do 2.47 and 4.44 K for the SW and SC algorithms, respectively. While the dates in which 
we had the mean values closer to the RTE were 01 March 2019, 28 January 2019, 06 September 2018, 18 June 2018 
and 17 May 2018, with results varying between -0.68 and 0.18 K for the SW, and 20 May 2019, 28 January 2019, 27 
December 2018, 18 June 2018, 17 May 2018 with results varying from -0.44 to 0.83 K, for the SC method.

Table 3. LST retrieved using SW and SC methods. Minimum, maximum and means values are shown. Δ refers to 
the difference between the means of the methods and the RTE results.

Dates Method LST Min (K) LST Max (K) LST Mean (K) Δ (K)
20 May SW 296.06 300.72 298.37 1.78

2019 SC 295.22 299.45 297.27 0.68
RTE 294.68 298.59 296.59 -

01 March SW 299.67 313.29 306.04 0.06
2019 SC 300.75 314.44 307.61 1.63

RTE 300.63 311.44 305.98 -
28 January SW 303.36 326.54 315.17 -0.68

2019 SC 303.28 331.96 315.95 0.1
RTE 304.89 321.01 315.85 -

27 December SW 299.65 316.48 309.39 2.47
2018 SC 298.63 311.76 306.50 -0.42

RTE 299.23 312.12 306.92 -
11 December SW 298.79 315.65 310.06 1.65

2018 SC 301.56 318.17 312.85 4.44
RTE 298.69 313.05 308.41 -

09 November SW 297.05 310.44 302.62 1.62
2018 SC 297.11 309.41 302.43 1.43

RTE 296.35 307.23 301.00 -
06 September SW 291.79 298.62 294.24 0.18

2018 SC 292.62 299.16 295.40 1.34
RTE 291.72 297.35 294.06 -

18 June SW 286.37 292.06 288.81 -0.21
2018 SC 287.77 292.41 289.85 0.83

RTE 287.10 291.47 289.02 -
17 May SW 291.50 298.31 294.60 0.09

2018 SC 291.68 297.03 294.07 -0.44
RTE 292.28 297.36 294.51 -
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In most images, the algorithms overestimated the LST related to the RTE. In fact, the underestimation only occurred 
in the dates of 28 January 2019 and 18 June 2018 for the SW, and 27 December 2018 and 17 May 2018 for the SC. 
Comparing both algorithms, we verified that the SW produced a slightly higher accordance in the LST means relative 
to the reference. 

Yu et al. (2014) also reported a superior performance of the SW over the SC method. Jiménez-Muñoz et al. (2014) 
compared a SW and a SC methodology and verified that the SW had superior performance over the SC. Figure 3 exhibits 
the spatial distribution of the LST in the hottest and coldest dates analyzed for the dune area.

Figure 3. Spatial distribution of the Land Surface Temperature – LST of the dune area in Kelvin. (a), (b) and (c) 
refers to the results of the SW, SC and RTE methods, respectively, for the hottest date found (28 January 2019). (d), 

(e) and (f) refers to the results of the SW, SC and RTE, respectively, for the coldest date (18 June 2018).

11 Pâmela Suélen Käfer et al.

Bulletin of Geodetic Sciences, 26(2): e2020008, 2020



According to Weng et al. (2019), the amount and spatial distribution of LST in a region is influenced by 
environmental parameters. The input parameters required for the calculation of w in both methodologies were 
obtained from measurements of air temperature (To) and relative humidity for the study area, provided by the 
meteorological station of INMET-National Institute of Meteorology located in the municipality of Tramandaí. 

These parameters resulted in a w values ranging from 1.55 to 3.62 g.cm-2. It is known that the algorithms, 
particularly the SC ones, work best when the w is low. In very humid conditions (e.g., > 3 g·cm−2) they perform badly 
(Prata et al. 1994; Jiménez-Muñoz et al. 2003; Barsi et al. 2005; Käfer et al. 2019). However, It can be considered that 
none of the methodologies was effectively affected by w in the retrieval of LST, since the SC method here applied is 
an improved algorithm, which is not sensitive to high w in the atmosphere and is able to maintain a good accuracy 
even in situations of very high w (Cristóbal et al. 2018).

When using a SC method, Souza e Silva (2005) claimed that it is possible to assume average values of Ta for 
a given region because there are small differences between the characteristics of the types of soil that compose 
the surface. In this context, the dune is a pseudo-invariant target and it is composed by 99.53 of quartz according 
to previous analysis done in the area. Thus, as the region evaluated is highly homogeneous and the meteorological 
station from where the parameters needed to correct the atmospheric effects were taken is located very close, 
there was certainly a good accuracy on the input data. Thus, it might have been the reason for the satisfactory 
performance of both methods.

Figure 3 demonstrates that the dune field has very high LST in the summer season in the South hemisphere 
and can achieve 321 K according to the RTE. In contrast, SC was the method that produced the greater number 
of outliers, exhibiting up to 332 K in the hottest day analyzed, which is probably an exceeded temperature value. 
Jiménez-Muñoz et al. (2014) commented that the SW algorithm tends to perform well over global conditions and a 
wide variety of water vapor (w) values. Therefore, even that Cristóbal’s method is improved to avoid errors due to 
high w content, SW was more suitable. Figure 4 shows the results of the methods relative to the RTE. 

Figure 4. LST retrieved from both methods SW and SC matchups with LST retrieved by the RTE with parameters 
transmittance (τ), downwelling (L↓) and upwelling radiance (L↑) obtained from the ACPC tool. (1:1 Line).

It is observed that as the temperature increases, both algorithms tend to have different performances. On 
the other hand, in the lower temperatures they have more similar behavior. In the Table 4 the quantitative values of 
the methods efficiency are shown.
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The correlations between the LST retrieved and the RTE results were strong and exhibited coefficients of 
determination (R²) between 0.984 and 0.973 for the SW and SC methods, respectively. These results were expected, 
since we were working with a homogeneous site and almost pure target. 

Yu et al. (2014) reported a RMSE of 0.90 K using RTE and the TIR band 10 when matching up with in situ data, 
which were not available in this research. Zhang et al. (2016) found a strong correlation (0.995) when evaluating 
SC algorithm using RTE as ground truth (same as here). Additionally, the authors reported values of RMSE varying 
between 0.61 and 1.24 K. We obtained in this work a RMSE value of 1.18 and 1.6 for the SW and SC algorithms, 
respectively, thus consolidating the better performance of the SW over the SC method. 

An analysis was also made using MSD and the Bias (Table 4). The MSD is the mean value of the standard 
deviation, while the Bias consists of the difference between estimated LST (SW and SC) and ground LST (RTE). The 
values of both found reinforce the results mentioned before. The results of Bias have shown a positive tendency, 
which means that they overestimate the LST. SW showed the best results for all analysis, producing an MSD of 
±0.983 and a Bias of 0.773.

Table 4. Statistical analysis of all scenes through the Coefficient of determination (R²), the Root Mean Square Error 
(RMSE), Mean standard deviation (MSD) and Bias.

SW SC
R² 0.984 0.973

RMSE 1.176 1.559
MSD ±0.983 ±1.017
Bias 0.773 1.065

Finally, ANOVA was applied for all methods and showed a f-value and p-value of 0.035 and 0.965 respectively, 
which indicates that at the 0.05 level the population means do not have statistical significance. 

It consolidates the comparison using R², RMSE, MSD and Bias as mentioned by Yu et al. (2014). The box plot 
of the LSTs is shown in Figure 5. These values indicate that we can obtain an acceptable accuracy for LST retrieval by 
applying the two methodologies in our region. However, SW algorithm is more indicated, since it displayed superior 
results in all analysis performed in this work.

Figure 5. Box plot of the LSTs means.

13 Pâmela Suélen Käfer et al.

Bulletin of Geodetic Sciences, 26(2): e2020008, 2020



4. Conclusions

This paper explores two operational methods of LST retrieval from Landsat 8 images of a pseudo-invariant 
target in Southern Brazil. The methodologies here tested require the parameters water vapor content in the 
atmosphere (w), atmospheric mean temperature (Ta) and land surface emissivity (LSE) as input data, which can be 
obtained only from image data and measurements of meteorological stations. Since no measurements in situ were 
available, the radiative transfer equation (RTE) was used as reference and its needed variables were retrieved using 
ACPC tool (Barsi et al. 2005).

The methods SW and SC showed good agreement with the RTE for most scenes analyzed, although both 
overestimated the LST. The hottest temperatures, which corresponded to the summer season in the Southern 
hemisphere, had bigger variation between pixels. In contrast, the coldest temperatures produced the values closer to 
the reference image (RTE). The one-way analysis of variance (ANOVA) indicated that at the 0.05 level the population 
means does not have statistical significance, which consolidates the comparisons using R², RMSE, MSD and Bias.

The correlations between the LST retrieved and the RTE were strong and produced coefficients of determination 
(R²) of 0.984 and 0.973 for the SW and SC algorithms, respectively. Furthermore, RMSE values of 1.18 and 1.6 for 
the SW and SC were found. The results of Bias showed a positive tendency for both methods, which means that 
they overestimated the LST. SW also exhibited the best values of MSD (±0.983) and Bias (0.773), thus reinforcing the 
superior performance of the SW over the SC method. 

The SW algorithm tends to perform well over global conditions and a wide variety of water vapor (w) values 
(Jiménez-Muñoz et al. 2014). Therefore, even that the SC method here applied is an improved methodology to avoid 
errors due to high w content, SW was more suitable relative to the RTE and can be applied with an accuracy of 1.18 
K in the Southern Brazil, without needing complex modeling or specific radiosonde data launched at the time of the 
satellite overpass.

These are simple comparisons using currently available data as preliminary validation efforts. In further study 
more ground truth data will be added to make a reasonable conclusion for validation of products. In future research we 
also intend to evaluate the performance of the algorithms in a more extensive time series and across different seasons.
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