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Abstract:  

Travel demand models have been developed and refined over the years to consider a 
characteristic normally found in travel data: spatial autocorrelation. Another important feature of 
travel demand data is its multivariate nature. However, regarding the public transportation 
demand, there is a lack of multivariate spatial models that consider the scarce nature of travel 
data, which generally are expensive to collect, and also need an appropriate level of detail. Thus, 
the main aim of this study was to estimate the Boarding variable along a bus line from the city of 
São Paulo - Brazil, by means of a multivariate geostatistical modeling at the bus stop level. As 
specific objectives, a comparative analysis conducted by applying Universal Kriging, Ordinary 
Kriging and Ordinary Least Squares Regression for the same travel demand variable was proposed. 
From goodness-of-fit measures, the results indicated that Geostatistics is a competitive tool 
comparing to classical modeling, emphasizing the multivariate interpolator Universal Kriging. 
Therefore, three main contributions can be highlighted: (1) the methodological advance of using 
a multivariate geostatistical approach, at the bus stop level, on public transportation demand 
modeling; (2) the benefits provided by the models regarding the land use and bus network 
planning; and (3) resource savings of field surveys for collecting travel data. 

Keywords: Transit Ridership; Boarding per Bus Stop; Universal Kriging; Ordinary Kriging; Linear 
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1. Introduction and Background 

 

Increasing concern about the environment and a discussion about sustainability have strongly 
influenced public policies around the world. In Brazil, law 12,587/2012, known as the Urban 
Mobility Law, points out that non-motorized and public transportation modes should be 
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prioritized over motorized and individual ones, respectively. This determination recognizes Public 
Transportation (PT) as a promoter of sustainable development and social inclusion. However, in 
order to allow the supply and demand balance of this service, support of appropriate planning is 
needed to guarantee the properly work of the transportation system.  

Among the most traditional models that provide support to travel demand predictions are those 
that use classical linear regression (George and Kattor 2013; Pendyala, Shankar and McCullough 
2000; Varagouli, Simos and Xeidakis 2005). This technique, however, overlooks an important 
characteristic normally found in travel demand variables: spatial autocorrelation, i.e., the fact that 
trip data located near each other in space present similar values. Since the traditional linear model 
assumes independence between sample data (Yan and Su 2009), the outcomes of using it cannot 
be totally reliable when it refers to travel demand variables as such variables are, generally, 
spatially dependent.    

Thus, linear regression adaptations, seeking to include spatial autocorrelation, as well as new 
improved techniques, were developed in order to overcome classical model constraints regarding 
treating Regionalized Variables (RV). Attempts to include spatial dependence of travel demand 
observations have been made by Gutiérrez et al. (2011) and Pulugurtha and Agurla (2012) from 
decay functions. This approach represents an advance in the RV modeling, as it basically consists 
of assigning weights to predictor data according to the distance between the database points and 
their influence areas (also known as service or catchment areas). Nevertheless, as such models 
include space only as an attribute, and in a deterministic way, these approaches cannot yet be 
considered as completely spatial (Fotheringham et al. 2003).   

This limitation is overcome by the spatial regression models, which have already been used for 
travel demand forecasting (Gan et al. 2019; Lopes, Brondino and Rodrigues da Silva 2014; Sarlas 
and Axhausen 2016; Wang 2001). These models can consider the spatial autocorrelation by means 
of an explanatory variable, obtained from a spatially lagged dependent variable, or by the residual 
term of the model, and both of them include a spatial weight matrix normally based on the 
distance between the points of the database (Fotheringham et al. 2003).   

Moreover, when dealing with scarce data, spatial regression models include a new interpolation 
approach (Krige 1951; Matheron 1963; 1971) that treats Regionalized Variables as random and no 
longer deterministic functions, allowing the application of statistical inference on the estimates 
provided by these new techniques. In its application, this science field, known as Geostatistics, 
presents the advantage of not requiring, necessarily, information about ancillary variables, and 
the fact that its interpolators generate unbiased and minimum variance estimates. In addition, 
Geostatistics can use the maximum amount of information available about the variable of interest 
to estimate its value in non-sampled points, also eliminating the negative effect of using clustered 
samples (Matheron 1971).  

Unlike the traditional spatial regression models, in which spatial interaction is usually captured by 
a weight matrix based on the distance between points, Geostatistics uses the semivariogram 
function. This tool, which comes from a probabilistic approach of Regionalized Variables, enables 
us to model the spatial dependence of the data, and the results of this modeling provide a 
complete understanding of the spatial structure of the variable of interest, both in visual and 
numerical ways.   

Geostatistics covers different types of estimators. In this paper, we mention three of them: Simple 
Kriging (SK), Ordinary Kriging (OK) and Universal Kriging (UK). The search for the interpolator that 
demonstrates the best performance, in goodness-of-fit measures, has led to several studies in 
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which Simple Kriging results are compared to those of Ordinary Kriging (Daya and Bejari 2015; 
Taharin and Roslee 2017; Viswanathan et al. 2015), in which Ordinary Kriging is compared to 
Universal Kriging (Hiemstra et al. 2010; Kiš 2016; Liu et al. 2015; Mubarak et al. 2015; Nalder and 
Wein 1998; Wang and Zhu 2016), and in which the three techniques are simultaneously compared 
(Asa et al. 2012; Seo et al. 2015). In short, since UK includes explanatory variables in its 
formulation, it normally outperforms the other interpolators, especially when there is some large-
scale trend present in the interest variable structure. Afterwards, OK, which assumes that the 
interest variable mean is unknown and varies locally, demonstrates the best results compared to 
SK, whose mean is global, constant and known.   

In spite of several comparative studies already developed, the conclusion reported in these studies 
is not consensual. In the aforementioned articles, the interpolators´ performance varied 
substantially according to the type of data under analysis. Regarding the travel demand, not many 
studies were observed that compare the performance of geostatistical interpolators. In the case 
study proposed by Shamo, Asa and Membah (2015), the interest variable (Annual Average Daily 
Traffic) refers only to rural highway segments, which does not offer, a priori, a contribution to the 
urban public transportation planning. Besides this, the authors themselves reinforced the idea 
that the best kriging technique and semivariogram can only be obtained from the structure 
present in the available information about the interest variable.  

Regarding urban bus transportation planning, which is highly important to the supply and demand 
balance of the PT system, passenger flow along the bus lines is a valuable information and, often, 
hard to acquire. Marques and Pitombo (2021), Marques and Pitombo (2019) and Marques (2019) 
proved that Geostatistics, more specifically Ordinary Kriging, demonstrates an excellent potential 
in estimating the three variables, collected from a Boarding and Alighting counts survey, that 
express the passenger demand along a bus route. They are: Boardings and Alightings (number of 
passengers entering and leaving the bus line at each bus stop, respectively) and Loading 
(passenger volume inside the bus at each line segment contained between two consecutive bus 
stops). Since this survey demands high resources, the results found by those authors suggest that 
it is possible to perform the Boarding and Alighting counts only in some bus line segments and, by 
kriging, estimate, with relative accuracy, the demand variable for non-sampled bus stops and 
segments. This study, however, did not make any comparison between OK and other geostatistical 
interpolators to verify which one of them could best fit the passenger volume estimate along a 
public transport line.  

It is worthwhile mentioning that the spatial modeling of public transportation passengers at the 
bus stop level and train, metro or bus station is the most detailed treatment that can be applied 
to PT network planning. Due to this, this approach is the most recent among the techniques that 
seek to program supply and understand transportation and land use relationships. In the scientific 
literature, several studies of this kind can be found, most at the station level (Blainey and Mulley 
2013; Blainey and Preston 2010; Cardozo et al. 2012; Chakour and Eluru 2013; 2016; Chiou, Jou 
and Yang 2015; Choi et al. 2012; Chow et al. 2006; Gutiérrez et al. 2011; Sun et al. 2016) and a few 
at the bus stop level (Chu 2004; Dill et al. 2013; Kerkman, Martens and Meurs 2015; Pulugurtha 
and Agurla 2012; Ryan and Frank 2009). However, due to the difficulty in acquiring the variables 
to be modeled (Boardings and Alightings), in the case of the bus stop level, to the best of the 
authors´ knowledge, these studies have still not provided a spatial approach of ridership until the 
present moment. Even in the station level cases, the studies retrieved basically focus on applying 
Geographically Weighted Regression and generalized linear models to ridership data. Only the 
station level study of Zhang and Wang (2014), which applies Universal Kriging to the Boarding 
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variable, was found so far, meaning that approaches based on multivariate Geostatistics at the 
bus stop level were not yet observed.  

Thus, the aim of this study is to estimate a public transportation demand variable, along a bus line, 
by means of a multivariate geostatistical modeling at the bus stop level. As specific objectives, a 
comparative analysis conducted by applying Universal Kriging, Ordinary Kriging and Ordinary Least 
Squares Regression for the same variable under analysis is proposed.  

Finally, the following main research gaps associated to this study can be enumerated: (1) 
Multivariate modeling of public transportation demand at the bus stop level by means of a 
geostatistical approach; (2) Lack of spatial approaches of transit ridership at the bus stop level; (3) 
The need for assessing the improvement, in goodness-of-fit measures, caused by the inclusion of 
explanatory variables to the geostatistical modeling; and (4) Passenger volume modeling at the 
bus stop level as they are the most appropriate elements for performing this analysis.  

This article contains 5 sections, including this introduction. The next section summarizes the few 
studies that perform ridership modeling at the bus stop level. Section 3 introduces the materials 
used in the case study and the method applied to them. Then, the results, as well as discussions 
about them, are presented in Section 4. Lastly, Section 5 draws the conclusions and also proposes 
suggestions for future research.  

 

2. Ridership models at the bus stop level 

 

While the traditional transportation planning (Ortúzar and Willumsen 2011) is done by means of 
Traffic Analysis Zones and continues as the most popular method for mobility diagnosis and 
solution proposal, Cervero (2006) argues that ridership modeling at the local level can provide 
demand estimates quickly and economically. Moreover, in spite of a regional approach, which uses 
averaged values of data for each Traffic Analysis Zone, boarding and alighting modeling per bus 
stop, train, metro or bus station can capture the effect of transit-oriented development on public 
transport demand, i.e., the influence of built environment variables on transit usage.  

From smart card data, boarding and alighting per train or metro station are readily available. On 
the other hand, bus ridership at the stop level is not easy to collect. Concerning this, cities often 
depend on expensive surveys, such as boarding and alighting surveys, or automatic counters, 
which are not widely popularized yet. It may be possible to obtain boarding and alighting per bus 
stop from smart card data and GPS information, but some assumptions have to be made that 
affect the accuracy of the results, especially in the case of Alighting. Therefore, boarding and 
alighting surveys remain the only way to collect ridership at the bus stop level accurately. Table 1 
shows studies that perform ridership modeling at the bus stop level. 

Table 1: Ridership models at the bus stop level 

Reference Dependent variable Model 
Independent variables 

Supply Demand 

Chu (2004) Boarding Poisson Transit level of service 
within 1 to 2-5 min of 
walking 

Income, No-vehicle households, 
Female (%), Hispanic (%), White 
(%), Age, No. of inhabitants, No. 
of jobs, Pedestrian factor 
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Reference Dependent variable Model 
Independent variables 

Supply Demand 

Ryan and Frank 
(2009) 

Boarding + alighting 
(logarithm) 

OLS (log-linear) Level of service (no. of 
routes/average waiting 
time) 

Income, No-vehicle households, 
Female (%), Hispanic (%), White 
(%), Youth (%), Walkability index 

Pulugurtha and 
Agurla (2012) 

Boarding Negative 
binomial with 
log-link 

On-network characteristics Household income, No-vehicle 
households, Asian population, 
Residential area 

Dill et al. (2013) Boarding + alighting 
(logarithm) 

OLS (log-linear) Transit service variables, 
Transportation 
infrastructure variables 

Households below poverty (%), 
No-vehicle households (%), 
White (%), Youth (%), elderly 
(%), Education level, Job 
accessibility, Employment (no.), 
Population (no.), Land use area 
(single-family, multifamily, 
commercial), Area parks, 
Pedestrian destinations, Land 
use mix index, Distance to city 
center 

Kerkman, 
Martens and 
Meurs (2015) 

Boarding + alighting 
(logarithm) 

OLS (log-linear) Stop frequency (logarithm), 
Directions, Frequency per 
direction, Direct 
connections, Competitive 
bus stops, Bus terminus, 
Transfer stop, Bus station, 
Dynamic information, 
Benches, Supply-demand 
index 

Potential travelers (logarithm), 
Income, Elderly (%), Distance to 
urban center (km), Land use: 
residential, Land use: 
agriculture, Land use: 
sociocultural facilities, Supply-
demand index 

Source: adapted from Kerkman, Martens and Meurs (2015) 

 

From Table 1, it can be seen that the models used are limited to ordinary least squares regressions 
with logarithmic transformation to correct the asymmetry of the interest variable. Models for 
count data were also applied, but none of them present a spatial approach of bus ridership. 
Pulugurtha and Agurla (2012) tried to include spatial dependence of boarding through a weighting 
function, but only in a deterministic way. 

Moreover, explanatory variables used in the boarding and alighting modeling can be divided into 
two groups: demand and supply variables. Demand independent variables intend to capture the 
effect of sociodemographic and land use features around bus stops on ridership. On the other 
hand, infrastructure and public transport service characteristics are addressed by the supply 
independent variables. In order to minimize the amount of information needed for the spatial 
modeling, the present study proposed a simple method for selecting the best predictors, as 
described in Section 3.   

  

3. Materials and Method 

 

The dataset used in this case study refers to the Boarding per bus stop data (number of passengers 
entering the bus line at each bus stop) over line 856R-10 from the city of São Paulo – Brazil. The 
results, from a Boarding and Alighting count survey performed along this line on a typical day 
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(Tuesday) in 2017, as well as the geographic coordinates of its 57 bus stops, were provided by São 
Paulo Transporte S.A. (SPTrans). Boarding and Alighting per bus stop were available for six times 
bands: 1st (04h to 04h59), 2nd (05h to 08h59), 3rd (09h to 15h59), 4th (16h to 19h59), 5th (20h 
to 23h59) and 6th (00h to 03h59). This information was then spatialized in the ArcGIS 10.2 
software using the SIRGAS 2000 UTM 23S projection system.  

In order to compose the group of explanatory variables to be included in Universal Kriging and 
Ordinary Least Squares Regression, both features from bus stops themselves and from their 
influence area were collected. From a catchment area of radius 400m centered in the bus stops 
(Zhao et al. 2003), the following variables were calculated: population (inhabitants) and population 
density (inhabitants per hectare), based on the 2017 Origin and Destination Survey (Metrô 2019) 
shapefile, which is given in Traffic Analysis Zones; and averaged values of household income and 
car ownership, female (%), population with no complete higher education (%), households with 
no private vehicles (%), percent of people aged up to 14, up to 17, aged between 18 and 22, 18 
and 29, 18 and 39 and above 60 years old. These data were obtained from the sampled households 
of the 2017 O/D Survey that were within the catchment area; area, in hectares, of the 16 
predominant land use classes according to the shapefile of predominant land use in 2016 
(GeoSampa), which is disaggregated at the block level; and number of roads and intersections, 
length (meters) and road density (meters per hectare) inside each catchment area, based on the 
São Paulo road system (Open Street Map) shapefile. The number of points of interest (POI), also 
given by OSM shapefile, inside each influence area, was also considered. Overlapping catchment 
areas were prevented by using Thiessen polygons, similar to the method adopted by Zhang and 
Wang (2014) and Sun et al. (2016), in a GIS environment. 

Besides the road system variables collected from Open Street Map, other indicators were adopted 
as a proxy of accessibility as well. Together with the Boarding/Alighting count survey results, 
SPTrans also made the General Transit Feed Specification (GTFS) data, from the São Paulo PT 
network, available. Knowing the code of the 57 bus stops covered by line 856R-10, the following 
was calculated from GTFS data: the number of bus lines that passed by each of these stops, and 
the average frequency of those lines; Euclidean and network distance between each bus stop and 
the nearest bus terminal, nearest metro station and nearest train station. Two intermodal 
proximity measures considering the shortest Euclidean and network distance between each bus 
stop and the nearest metro or train station were also included. While Euclidean distance is based 
on a straight line, network distance is calculated along the road system. These distance measures 
were obtained from the 57 bus stop shapefiles along with the São Paulo bus terminals, metro 
stations and train stations shapefiles, and Open Street Map road system. Versions of the 
populational, road system and accessibility variables, transformed by the natural logarithm, were 
also considered, and, in the cases where the raw data contained zeros, it was added to 1 before 
applying the transformation (Bartlett 1947). In order to include only the attributes encompassed 
by the bus stops´ influence area, the attributes of the original shapefiles went through an aerial 
interpolation. As stated in Table 1, the data collected for the modeling procedure covers both 
supply and demand independent variables.    

Afterwards, dependent and independent variables were selected using a joint analysis of linear 
correlation and spatial autocorrelation. In order to choose the variable of interest, the Moran 
index (Moran 1948) was calculated for the Boarding and Alighting data in the six time bands 
mentioned above. After that, the degree of association between the cases with the highest and 
statistically significant values of Moran’s index and all explanatory variables was tested by the 
Pearson linear correlation coefficient (R). In order to eliminate multicollinearity, at this stage, the 
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R value between two potential predictors was limited to 0.60. Therefore, when a pair of 
independent variables had a high correlation with the variable of interest, but R with each other 
above 0.60, the variable with the least correlation with the dependent variable was discarded. This 
threshold was considered acceptable to avoid the omitted variable bias as well, since a pair of 
highly correlated variables does not always represent a cause-effect relationship. Other criteria 
for choosing dependent and independent variables were: expected correlation signal and 
presence of independent variables from both supply and demand groups. Thus, the number of 
Boardings, transformed by the natural logarithm in the 5th time band, also known as Night Peak 
(NP, from 20h to 23h59), was chosen as the dependent variable. As potential predictors, the 
following variables were kept: population, number of POIs, number of road intersections, road 
length, number of other bus lines, mean household income and average frequency of other bus 
lines in the same time band as Boardings, all transformed by natural logarithm; also, population 
with no complete higher education (%), residential, commercial and services area (ha), and 
network distance, in meters, between each bus stop and the nearest metro station, were 
considered. 

The modeling step started by initially calibrating a linear regression model. To select the best 
predictors among those considered, a stepwise method was applied, in which only three 
independent variables remained. Regarding the modeling area, in general, there is a trade-off 
between the prediction power of the technique and the number of explanatory variables used in 
the model, whose data source might be hard to access. The desirable scenario is to have a 
minimum number of explanatory variables (that are preferably easy to acquire) associated to a 
satisfactory performance of the model. Based on this, the following procedure was adopted: 
initially, a simple linear regression model was calibrated with each one of the three explanatory 
variables, separately; then, three linear regressions were estimated using two predictor 
combinations; afterwards, a third model considering the three variables as predictors was 
generated. This approach was repeated in the geostatistical modeling by means of UK as this 
estimator also includes explanatory variables in its formulation. The purpose of this analysis was 
to verify whether the models with the least explanatory variable are also competitive in terms of 
minimizing errors between real and estimated values, and how much the spatial approach 
improves bus ridership estimates compared to traditional linear regression.  

All linear regression models were calibrated using the Ordinary Least Squares method (Yan and Su 
2009). Considering only the cases in which all predictors were statistically significant in linear 
regression (p < 0.10), the geostatistical modeling steps were performed. They are: (1) Empirical 
semivariogram calculation and model fitting; (2) Cross validation; and (3) Estimation by OK and 
UK.  

The semivariogram 𝛾(ℎ), or variogram 2𝛾(ℎ), is the main graphical tool of Geostatistics as it 
visualizes the spatial structure of the variable under analysis. The calculation of the empirical, or 
experimental, semivariogram is given by Equation (1) (Cressie 1993; Matheron 1971). 

𝛾(ℎ) =
1

2𝑁
∑[𝑍(𝑥𝑖 + ℎ) − 𝑍(𝑥𝑖)]

2

𝑁

𝑖=1

 (1) 

𝑍(𝑥): value of the Regionalized Variable Z in the sampled geographical position 𝑥; 
𝑁: number of pairs situated at distance ℎ. 
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Equation 1 refers to Ordinary Kriging, in which the semivariogram is calculated straight based on 
the RV information. Concerning UK, this calculation is applied to the residual term, in which a 
spatial structure is assumed. Then, a theoretical model is adjusted to the empirical semivariogram 
values. The process of fitting a well-defined function to the empirical semivariogram points 
consists of obtaining three main parameters, the nugget effect, partial sill and range, from a pre-
established method (Cressie 1993). In the present case study, geostatistical modeling was 
performed by means of the three main theoretical semivariogram models: Exponential (Exp), 
Gaussian (Gau) and Spherical (Sph) (Olea 2006), in order to verify if one of them demonstrates a 
much better adjustment compared to the others. 

The process of kriging a Regionalized Variable basically consists of obtaining the optimum weights 
for the linear combination of weights and neighboring values that results in a continuous surface 
of estimated points, which also covers the non-sampled locations. The kriging estimator is given 
by Equation (2) (Cressie 1993; Matheron 1971). 

𝑍∗(𝑥0) = ∑𝜆𝑖𝑍(𝑥𝑖)

𝑛

𝑖=1

 (2) 

𝑍∗(𝑥0): estimated value of Regionalized Variable at the geographic position 𝑥0; 
𝜆𝑖: optimum weight assigned by kriging to the neighbor 𝑖 value. 

 

Although both OK and UK are linear combinations, the first one assumes a constant and local, but 
unknown mean (𝜇) of the dependent variable observations (Equation (3)), while the latter relaxes 
this assumption by considering the presence of a large-scale trend over the response variable 
structure (Equation (4)). 

𝑍 = 𝜇 + 𝜀 (3) 
 

𝑍 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2+. . . +𝛽𝑛𝑥𝑛 + 𝜀 (4) 
 

in which 𝜀  is the error term of the model, 𝑥𝑘  represents the explanatory variables, and 𝛽𝑘+1 

expresses the linear function parameters to be calibrated. Thus, Universal Kriging assumes that 
the Regionalized Variable values are affected not only by their neighbors (small range variation), 
but also that there is a systematic component in their structure, caused by the influence of the 
built environment around the treatment elements, which are, in this case, the bus stops. Besides 
this, UK allows this large-scale variation to be modeled through the inclusion of explanatory 
variables to the kriging estimator. Thus, instead of considering the errors completely as white 
noise, it is assumed that the RV spatial structure is present in the residual term oscillation, where 
the semivariogram function is calculated (Cressie 1993).  

Ordinary Kriging weights 𝜆𝑖 are obtained from a matrix operation, represented in Equation (5). 
The resulting nonlinear equations system takes into account three constraints: the (1) non bias, 
(2) minimum variance, and (3) weight sum equal to 1, in order to guarantee the best linear 
unbiased estimator (Cressie 1993; Goovaerts 1997; Matheron 1971). 

[
 
 
 
 
𝛾(ℎ1−1)

𝛾(ℎ2−1)
⋮

𝛾(ℎ𝑛−1)
1

   

𝛾(ℎ1−2)

𝛾(ℎ2−2)
⋮

𝛾(ℎ𝑛−2)
1

  

…
…
⋱…
1

   

𝛾(ℎ1−𝑛)

𝛾(ℎ2−𝑛)
⋮

𝛾(ℎ𝑛−𝑛)
1

   

1
1
⋮
1
0]
 
 
 
 

  

[
 
 
 
 
𝜆1

 𝜆1

⋮
𝜆𝑛

𝜇 ]
 
 
 
 

=

[
 
 
 
 
𝛾(ℎ0−1)

𝛾(ℎ0−2)
⋮

𝛾(ℎ0−𝑛)
1 ]

 
 
 
 

 (5) 
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The matrix on the left corresponds to the theoretical semivariance between sample points [𝐾]; 
vector [𝜆] in the middle contains the kriging weights; and the vector on the right expresses the 
theoretical semivariance between the sample points and the point to be estimated [𝑀] . 
Therefore, OK weights are calculated according to Equation (6) for each point to be estimated. 

[𝜆] = [𝐾]−1[𝑀] (6) 
 

On the other hand, Universal Kriging formulation deals with parameters in linear function, which 
is similar to classical regression, and residual semivariogram. Therefore, its calibration process is 
complex and must be performed in an iterative way. First, the linear model is calibrated and, after 
the residual term is calculated, the nugget effect, partial sill and range are obtained. Other values 
for these parameters, nearby the original ones, are tested until there is some convergence to an 
optimum error between the observed and estimated value criteria (Cressie 1993; Selby and 
Kockelman 2013; Zhang and Wang 2014). In short, UK estimates are given by Equation (7). 

𝑍∗(𝑥0) = [𝑋𝑜][𝛽] + [𝑉𝑠0
𝑇][𝑉𝑠

−1][𝜀] (7) 

 

Where 𝑋0 is the matrix of explanatory variable observations of point 𝑥0, 𝛽 is the vector of linear 
parameter estimates, 𝑉𝑠0

 represents the vector of estimated covariances between sample points 

and point 𝑥0, while 𝑉𝑠 expresses the matrix of estimated covariances between sample points. It is 
worth remembering that covariance (𝑉) and semivariogram (𝛾) functions are related according 
to Equation (8). 

𝑉(ℎ) = 𝑐0 + 𝑐1 − 𝛾(ℎ) (8) 
 

Where 𝑐0 and 𝑐1 stand out, respectively, for the nugget effect and partial sill parameters from the 
theoretical semivariogram. 

Concerning geostatistical estimates, cross validation is performed by the leave-one-out method 
(Cressie 1993). This technique consists of removing the database points one by one and calculating 
their value from the remaining points and theoretical semivariogram parameters (and also the 
linear function, when it refers to UK). Therefore, from the observed value at the points and 
respective estimated value, several goodness-of-fit measures can be established to assess the 
performance of the applied spatial statistics tool.  Regarding the linear regression, the estimate 
considered in this study was the number of Boarding predicted by the model equation. Thus, some 
of the goodness-of-fit measures suggested by Hollander and Liu (2008) were calculated, which 
are: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage 
Error (MAPE) and Pearson linear correlation coefficient between the observed and predicted 
values (R).  

The cited goodness-of-fit measures were applied to the results of each estimate and, hence, it was 
possible to assess and compare the accuracy of results found from such techniques, and to select 
those that demonstrated the best performance. In the UK cases, results from the semivariogram 
that provided the smallest errors were selected to compare them with the respective linear 
regression estimates. The computational resources that gave support to the method stages were: 
ArcGIS 10.1, QGIS 3.0.3 and GRASS GIS 7.4.0 (Bundala, Bergenheim and Metz 2014) to collect the 
potential predictors; GeoDa (Anselin 2004; Anselin, Syabri and Kho 2005) for Moran’s index 
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calculation; IBM SPSS 24.0 (IBM 2016) for correlation analysis; and R (R Core Team 2020; Ribeiro 
Jr and Diggle 2016; Papritz 2020a; Papritz 2020b) for linear regression, Ordinary Kriging and 
Universal Kriging.  

 

4. Results and Discussion 

 

Figure 1 shows thematic maps for the dependent variable, Boardings, i.e., the number of 
passengers entering each bus stop on a typical day (Tuesday) in 2017, in the aggregated set of bus 
trips made from 20:00 to 23:59; and for the three explanatory variables selected by the stepwise 
method. They are: (1) natural logarithm of population (lnpop); (2) residential, commercial and 
services area, in hectares (res_com_serv area); and (3) network distance, in meters, between each 
bus stop and the nearest metro station (metrodist_net). As lnpop and res_com_serv area belong 
to the demand variable group, and metrodist_net to the supply one, this result was deemed 
satisfactory. 

As expected, bus stops located at regions with more inhabitants tend to have a higher number of 
Boardings. This pattern can also be noted in the case of residential, commercial and service area, 
meaning that the higher the land use mixture, the higher Boardings will be. Pearson’s correlation 
coefficient between ln_boarding and ln_pop and between ln_boarding and res_com_serv area 
was, respectively, 0.68 and 0.45. On the other hand, despite some bus stops located near metro 
stations are showing less passenger flow, there are many points nearer metro stations that do 
present a high number of Boardings. This relationship resulted in a R value of -0.26 between 
ln_boarding and metrostation_net. Thus, it can be stated that most 856R-10 line users, in the 
period from 20:00 to 23:59, come from metro lines, probably returning from work to home. 

Figure 1 also reveals that the number of Boardings per bus stop in line 856R-10 shows, in general, 
five volume peaks: the first one is next to the beginning of the route, the second and third are 
halfway, and the last two are near the end of the line. Such peaks interlay with lower passenger 
flow points, starting at the first bus stops of the line, which present a reduced number of 
Boardings. This pattern resulted in a Moran’s index of about 0.26, which increased to 0.48 with 
the logarithmic transformation. In both cases, the index value was statistically significant (pseudo 
p-value < 0.05), proving the presence of spatial dependence in Boardings per bus stop data.  

Descriptive statistics of dependent and independent variables are presented in Table 2. Travel 
demand variables, in general, are given as count data and show asymmetry very often. Thus, their 
relationship with explanatory variables may not be linear. In this case, logarithmic transformations 
contribute to linearizing the model equation, addressing the real nature of the data and, hence, 
improving results.  

As shown in Table 2, mean and median measures for ln_boardings and ln_pop are similar, given 
their normality. Standard deviation for all variables, as well as minimum and maximum values, 
reveal the presence of a wide range of values, meaning the inclusion of more diversified data in 
the modeling, thus making it possible to use the models to estimate ridership for various 
conditions. Moreover, it is important to mention that Boardings and res_com_serv_area were zero 
for three and five bus stops, respectively. In the case of Boardings, some points at the end of the 
route did not have any passengers entering the bus line in the period from 20:00 to 23:59, 
probably because at this time most users are returning home from work and, hence, at the end of 
the line, most passengers are leaving the vehicle rather than entering it.   
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Figure 1: Patterns of (from top to bottom) Boardings; Population; Residential, commercial and 
services area; and distance to the nearest metro station along the bus line 856R-10  
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Table 2: Descriptive statistics 

  ln_boarding ln_pop 
res_com_serv area  

(ha) 
metrostation_net  

(m) 

N 57 57 57 57 

Mean 2.51 7.81 3.23 1319.60 

Std. Deviation 0.95 0.61 3.16 909.20 

Minimum 0.00 6.23 0.00 35.90 

25% 2.20 7.43 1.14 490.64 

50% 2.64 7.76 2.21 1136.44 

75% 3.11 8.34 4.64 2089.06 

Maximum 4.13 8.75 16.76 3046.28 

 

4.1 Univariate step: Ordinary Kriging 

 

Results of Ordinary Kriging are displayed in Table 3. In spite of the low percentages of nugget effect 
relative to the sill (nugget effect plus partial sill), goodness-of-fit measures are not quite 
satisfactory. Comparing the three theoretical models, the exponential one provided the best 
estimates. Experimental semivariogram for ln_boarding and the fitted exponential model are 
shown in Figure 2. 

Table 3: Ordinary Kriging results 

Measure\Model Gaussian Exponential Spherical 

Nugget effect 37.26% 25.24% 35.09% 

Partial sill 0.933 1.155 0.813 

Range (m) 10000 10000 15000 

MAE 9.138 8.308 8.413 

RMSE 13.551 12.684 12.870 

MAPE 117.25% 96.27% 100.13% 

R 0.057 0.296* 0.256* 

Note: * statistically significant at the 0.05 level (one-tailed). MAE, RMSE, MAPE and R are, respectively, Mean Absolute 
Error, Root Mean Square Error, Mean Absolute Percentage Error and Pearson Linear Correlation Coefficient between 
predicted and observed values. 

 

Figure 2: Semivariogram of Boardings with logarithmic transformation 
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The exponential model had a good fit to the experimental ln_boardings semivariogram. On the 
other hand, the experimental semivariogram seems to increase without bound as the lag distance 
increases, which could indicate the presence of a large-scale trend in the interest variable that is 
not being modeled (Oliver and Webster 2015). This might be the reason why Ordinary Kriging 
estimates are almost twice the observed values, given a Mean Absolute Percentage Error of 96%. 
It is worth remembering that, although geostatistical and traditional modeling were performed 
based on the values of Boardings with logarithmic transformation, goodness-of-fit measures were 
calculated using the estimates with inverse transformation, so they could be directly compared to 
the real values.  

 

4.2 Multivariate step: Universal Kriging and linear regression 

 

According to the method, 25 different estimates were obtained. They are:  Ordinary Kriging with 
exponential (1), Gaussian (2) and spherical (3) semivariograms, which have already been showed 
in subsection 4.1; simple linear regression with ln_pop (4), res_com_serv area (5), and 
metrodist_net (6) as the predictor; multiple linear regression with ln_pop and res_com_serv area 
(7); with ln_pop and metrodist_net (8); and with res_com_serv area and metrodist_net (9); then 
with ln_pop, res_com_serv area and metrodist_net (10); UK with ln_pop and the three 
semivariograms (11-13); UK with res_com_serv area and the three semivariograms (14-16); UK 
with ln_pop and res_com_serv area, and the three semivariograms (17-19); UK with ln_pop and 
metrodist_net, and the three semivariograms (20-22); and finally UK with ln_pop, res_com_serv 
area and metrodist_net as predictors, and the three semivariograms (23-25). The 
metrodistance_net variable was not statistically significant in the simple linear regression (6) 
neither when coupled with the res_com_serv area (9). Thus, these combinations were not 
repeated in the geostatistical modeling and will not be presented here, for brevity.  

Table 4 shows the resulting parameters from Universal Kriging and linear regression. As for 
Ordinary Kriging, the best semivariogram model, i.e., the theoretical semivariogram that yielded 
the best goodness-of-fit measures, in all predictor combination cases, was the exponential one. 
Therefore, for the sake of brevity, Universal Kriging results shown in Table 4 correspond only to 
those from the exponential model.  

Table 4: Results from spatial interpolators and classical linear regression 

Model\Parameters Intercept ln_pop 
res_com_serv 

area (ha) 
metrodist_net 

(m) 
Nugget 
effect 

Partial 
sill 

Range (m) 

Universal Kriging -6.0460*** 1.1040***   47.54% 0.3090 1229.0990 

Linear regression -5.8260*** 1.0670***      

Universal Kriging 2.1490***  0.1025*  46.69% 0.4350 1365.1720 

Linear regression 2.0762***  0.1352***     

Universal Kriging -5.7216*** 1.0207*** 0.0864**  68.48% 0.1510 2238.5980 

Linear regression -5.3115*** 0.9615*** 0.0965**     

Universal Kriging -5.5912*** 1.1012***  -0.0003* 54.75% 0.2380 1288.6310 

Linear regression -5.4770*** 1.0700***  -0.0003**    

Universal Kriging -5.3772*** 1.0234*** 0.0715* -0.0002(.) 69.26% 0.1420 2058.5110 

Linear regression -5.1560*** 0.9829*** 0.0789** -0.0002*       

Note: ***, **, * and (.) are statistically significant at the 0.001, 0.01, 0.05 and 0.1 level, respectively. 
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As expected, from the linear correlation analysis, population and residential, commercial and 
service area have a positive effect on ridership. Although the signal of metrodist_net is negative, 
it means that the closer a bus stop is from a metro station, the higher the number of Boardings at 
it will be. Moreover, it should be noted that all parameter estimates show little variation across 
the models (except for the intercept in the second model), which suggests that some factors, such 
as multicollinearity, that could cause misunderstanding in the coefficient’s values, are not present.    

Based on statistical significance, one can assume that the order of importance of predictors used 
might be: ln_pop, res_com_serv area and metrodist_net, which was also the sequence of 
predictors entering in the stepwise selection method. The percentage of the nugget effect in 
relation to the sill increased compared to the univariate case. In spite of that, in two of the five 
models, this parameter remains below 50%. According to Cambardella et al. (1994), variables with 
nugget-to-sill ratio of 25% up to 75% can still be considered as spatially dependent, in a moderate 
way. Conversely, range was significantly reduced, showing values from 1.2km to 2.2km, 
approximately.  

Table 5 presents the goodness-of-fit measures applied to models shown in Table 4. Ordinary 
Kriging results, based on exponential semivariogram, are also displayed. 

Table 5: Goodness-of-fit measures 

Case Predictors Model MAE RMSE MAPE R 

0 - Ordinary Kriging 8.308 12.684 96.27% 0.296* 

1.1 Ln_pop 
Universal Kriging 5.211 8.117 42.03% 0.800** 

Linear regression 7.820 11.028 72.51% 0.537** 

1.2 Res_com_serv area 
Universal Kriging 5.758 9.500 50.43% 0.703** 

Linear regression 8.686 13.830 81.89% 0.309** 

2.1 Ln_pop and res_com_serv area 
Universal Kriging 6.071 9.434 48.10% 0.683** 

Linear regression 7.424 10.694 62.36% 0.586** 

2.2 Ln_pop and metrodist_net 
Universal Kriging 5.437 8.460 43.89% 0.772** 

Linear regression 7.981 11.341 68.58% 0.502** 

3 
Ln_pop, res_com_serv area and 
metrodist_net 

Universal Kriging 5.926 9.355 46.39% 0.690** 

Linear regression 7.409 10.782 60.44% 0.571** 

Note: ** and * are statistically significant at the 0.01 and 0.05 level, respectively (one-tailed). 

 

Based on the goodness-of-fit measures, Universal Kriging models can be ranked, from the best to 
the worst, as follows: 1.1, 2.2, 3, 1.2 and 2.1. The best models for linear regression, in turn, were 
3 and 2.1, followed by 1.1, 2.2 and 1.2. Comparing all eleven models simultaneously, UK estimates 
outperformed all other models, meaning that even the UK cases with only one or two predictors 
showed better results than linear regression with three predictors. Ordinary Kriging, which is a 
univariate technique, presented a MAE and RMSE lower than those of linear regression with 
res_com_serv area as the predictor.   

Although models with more predictors may better explain the variance of interest variable, 
estimates can show no or little improvement when a new explanatory variable is added to the 
model, even a statistically significant one. The best results, from both Universal Kriging and linear 
regression, are highlighted in bold in Table 5. In the case of Universal Kriging, the model with only 
ln_pop as the predictor yielded the best estimates, while for linear regression, the best results are 
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those from models 2.1, which use ln_pop and res_com_serv area, and 3, which uses all three 
predictors. 

The reason for that could be the fact that when multiple predictors are added to the linear 
combination part of UK, spatial structure of residuals starts to get blurred. As shown in Table 4, 
the nugget effect of cases 2.1 and 3 are the highest ones, corresponding to 70% of sill, 
approximately. However, even in these cases, estimates can still be improved through 
geostatistical modeling as Universal Kriging do not overlook the remaining spatial dependence on 
residuals.  

Table 5 also proves that kriging estimates can, in fact, be improved by including explanatory 
variables in geostatistical modeling. Comparing Ordinary Kriging results with those of the UK last 
ranked case (model 2.1), there is a reduction in MAE, RMSE and MAPE of about 27%, 26% and 
50%, respectively, while R increased 131%. Considering the best model of UK (1.1), these numbers 
increase to 37%, 36%, 56% and 170%, respectively. Moreover, ridership estimates can also be 
significantly improved by geostatistical modeling compared to linear regression: the most subtle 
improvements were for model 2.1, which showed reductions of 18%, 12% and 23% in MAE, RMSE 
and MAPE, respectively, and an increase of 17% in R. On the other hand, MAE and RMSE reduced 
34% and 31%, respectively, in model 1.2, and R increase reached 128%. The best MAPE 
improvement corresponded, in turn, to model 1.1, with a reduction of 42%. These results indicate 
that not only geostatistical modeling can provide the best ridership estimates, but also that 
improvements will depend on what predictors are being used.   

Finally, linear regression models from Table 1 exhibited the following adjusted coefficients of 
determination (adjusted R²): 0.328 and 0.330 (Ryan and Frank 2009), 0.69, 0.62 and 0.53 (Dill et 
al. 2013), and 0.772 and 0.762 (Kerkman, Martens and Meurs 2015). Meanwhile, adjusted R² for 
linear regression models in Table 5 was: (1.1) 0.453, (1.2) 0.188, (2.1) 0.545, (2.2) 0.518, and (3) 
0.572. It should be noted that despite using much less information, some linear regression results 
obtained in the present study, which were outperformed by UK, are similar or slightly better than 
the first two, which suggests that the three predictors used were correctly specified, as they can 
explain a significant part of the ridership variance, show little variation when a new predictor is 
added to the model, and are statistically significant.  

In order to provide a disaggregated analysis of errors and allow a comparison between models, 
Figure 3 shows maps of error ratios for Ordinary Kriging (a); Linear regression and Universal Kriging, 
both with all predictors, which was considered the best result of linear regression (b and c, 
respectively); Linear regression and Universal Kriging, both with the ln_pop as the predictor, which 
is the best result of UK (d and e, respectively).  
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Figure 3: Error ratios of (from left to right) Ordinary Kriging (a), Linear Regression and Universal 
Kriging with all three predictors (b and c), and Linear Regression and Universal Kriging with 

ln_pop (d and e).  

 

Three bus stops had an observed Boarding value equal to zero. Therefore, the error ratio could 
not be calculated for these cases, which is the reason why they do not appear in Figure 3. From 
the minimum and maximum error ratios, as well as the limits for each error group and the amount 
of bus stops in each group, the following conclusion can be drawn: the best estimates come from 
UK with ln_pop, then UK with all the predictors, followed by linear regression with three 
predictors, linear regression with ln_pop, and lastly Ordinary Kriging. 

Despite the fact that Ordinary Kriging showed some very high errors, a detailed analysis of 
percentiles reveals that OK and linear regression with all predictors had the same amount of bus 
stops with an error ratio between -30% and 30%, approximately, which corresponds to 37% of the 
total data. Linear regression with ln_pop, UK with three predictors and UK with ln_pop showed, 
respectively, 34%, 45% and 50% of bus stops with an error rate between -30% to 30%, which was 
considered a satisfactory range of error. 

As Ordinary Kriging assumes the interest variable mean is a constant, OK modeling of variables 
that present a wide range of variation usually yields high errors. Conversely, the same amount of 
bus stops showed error ratios ranging from -30% and 30% in both OK, which is a univariate 
technique, and linear regression with all predictors. On the other hand, as it does not include any 
explanatory variable, OK can only be applied to short-term public transportation planning, in which 
all built environment and transportation system variables are assumed to remain constant. 

Following the bus stop sequence from top to bottom in Figure 3, extreme error ratios occurred at 
bus stops 32, in all cases, and 42, in Ordinary Kriging estimates. The main reason for that might be 
the size of catchment areas devoted to these points, which are the smallest ones due to high 
proximity to neighboring bus stops. This problem could be solved by running an alternative 
modeling in which all catchment areas would have the same size, overlapping each other, and 
then include some explanatory variable that could control the occurrence of competitive bus 
stops, as performed by Kerkman, Martens and Meurs (2015).  

 

¯

0 1 2
Kilometers

OK (%)

-81 - -37 (15)

-34 - 18 (23)

35 - 138 (10)

178 - 481 (4)

1082 - 1134 (2)

LR 3 (%)

-79 - -34 (17)

-24 - 24 (20)

36 - 108 (13)

196 - 252 (3)

575 (1)

UK 3 (%)

-70 - -28 (18)

-19 - 22 (19)

29 - 79 (12)

92 - 173 (4)

411 (1)

LR 1.1 (%)

-85 - -18 (23)

-10 - 49 (19)

57 - 147 (8)

221 - 334 (3)

928 (1)

UK 1.1 (%)

-66 - -54 (4)

-43 - -7 (21)

-5 - 47 (21)

63 - 160 (7)

410 (1)

0 1 2
Kilometers

0 1 2
Kilometers

0 1 2
Kilometers

0 1 2
Kilometers

(a) (e) (b) (c) (d) 



17                                                                                                                                                             MARQUES, S.; PITOMBO, 
C. 

Bulletin of Geodetic Sciences. 27(2): e2021019, 2021. 

5. Conclusions and Final Remarks 

 

Public Transportation plays an important role in the sustainable development of cities and social 
inclusion. In order to promote the proper functioning of this system, travel demand models have 
been developed and refined over the years, seeking to consider a characteristic normally found in 
travel data: spatial autocorrelation. Another important feature of travel demand data is its 
multivariate nature. However, regarding the bus transit demand, there is a lack of multivariate 
spatial models that consider the scarce nature of travel data, which are expensive to collect, and 
also need an appropriate level of detail. Thus, the main aim of this study was to estimate the 
Boarding variable along a bus line from the city of Sao Paulo - Brazil, by means of a multivariate 
geostatistical modeling at the bus stop level. As specific objectives, a comparative analysis 
conducted by applying Universal Kriging, Ordinary Kriging and Ordinary Least Squares Regression 
to the same travel demand variable was proposed.  

In general, results showed that the inclusion of explanatory variables to the kriging estimator 
contributes, in fact, to increasing the prediction power of the technique. However, the 
performance of the models with only one predictor did not follow the same pattern in both 
geostatistical and traditional modeling. This reinforces the opportunity to investigate what would 
be the best predictors to be used in transportation demand spatial approaches to avoid those that 
would not bring significant improvements, but whose acquisition would require additional costs. 
Results also suggested that Ordinary Kriging, which does not require additional information about 
explanatory variables, can be competitive to linear regression with only one predictor. This comes, 
probably, from the fact that OK already considers the spatial autocorrelation present in the 
Boarding variable. However, this interpolator has the disadvantage of not being able, from only 
the available data about the interest variable, to predict its values for other scenarios, including 
future ones. This capacity is observed only in Universal Kriging and Linear Regression. In addition, 
estimates from all geostatistical cases revealed a better adjustment of exponential 
semivariograms to Boarding data.  

Although the results from Universal Kriging may suggest that the lower the number of predictors, 
the better the estimates will be, we do not encourage ignoring additional information when it is 
available and contributes, in fact, to explaining interest variables. However, when detailed data is 
not provided, which is the case of various cities, in development countries, especially the small 
and medium-sized ones, spatial models with little information available could also yield good 
estimates. In general, results showed that traditional modeling can always be improved by 
geostatistical multivariate interpolators, not only in cases where there is only one predictor, but 
also when a large amount of information is used. Best results from UK showed 50% of bus stops 
with error between -30% and 30%. In turn, regarding the best results from linear regression, only 
37% of bus stops had errors within this range.     

Therefore, three main contributions are highlighted: the methodological advance of using a 
detailed geostatistical approach, the bus stop level, on bus ridership modeling; the benefits 
provided by the models regarding the land use and bus network planning; and resource savings of 
field surveys for collecting travel data. In order to compare the achieved results with another 
spatial method that, similar to the geostatistical interpolators, also creates a surface of estimated 
values, Geographically Weighted Regression is recommended for the same dataset used in the 
present study. Nevertheless, it is opportune to compare the OK and UK results to those of 
generalized linear models (Poisson and Negative Binomial regressions), which consider the 



Applying multivariate geostatistics for transit ridership modeling at the bus stop level.                                                      18 

Bulletin of Geodetic Sciences. 27(2): e2021019, 2021. 

positive asymmetry of count data, and those of geographically weighted models with count 
distributions for the response variable.  

 

ACKNOWLEDGEMENT 

 

The authors would like to thank the São Paulo Research Foundation (FAPESP, Brazil - Process 
2019/12054-4), the National Council for Scientific and Technological Development (CNPq, Brazil - 
Process 304345 / 2019-9), and SPTrans, for the Boarding/Alighting survey data used in this study. 

 

 

AUTHOR´S CONTRIBUTION 

 

The  first  author  (Samuel  de  França  Marques)  was  responsible  for  Conceptualization,  Data 
Curation, Formal Analysis, Investigation, Methodology, Visualization, Writing - initial draft and 
Writing - review and editing; the second author (Cira Souza Pitombo) was responsible for 
Supervision and Writing - revision and editing. 

 

REFERENCES 

Anselin, L. 2004. Exploring spatial data with GeoDaTM: a workbook. Urbana, 51(61801). Available 
at: <http://www.csiss.org/clearinghouse/GeoDa/geodaworkbook.pdf> [Accessed November 
2020].  

Anselin, L. Syabri, I. and Kho Y. 2005. GeoDa: An Introduction to Spatial Data Analysis. Geographical 
Analysis, 38(1), pp5–22. doi: https://doi.org/10.1111/j.0016-7363.2005.00671.x  

Asa, E. Saafi, M. Membah, J. and Billa, A. 2012. Comparison of Linear and Nonlinear Kriging 
Methods for Characterization and Interpolation of Soil Data. Journal of Computing in Civil 
Engineering, 26(1), pp11–18. doi: https://doi.org/10.1061/(ASCE)CP.1943-5487.0000118 

Bartlett, M. S. 1947. The Use of Transformations. Biometrics, 3(1), pp 39–52. 

Blainey, S. and Mulley, C. 2013. Using geographically weighted regression to forecast rail demand 
in the Sydney region. In: Australasian Transport Research Forum 2013. Brisbane, Australia, 2-4 
October 2013. 

Blainey, S. and Preston, J. 2010. A geographically weighted regression based analysis of rail 
commuting around Cardiff, South Wales. In: 12th World Conference on Transport Research. Lisbon, 
Portugal, 11-15 July 2010. 

Bundala, D. Bergenheim, W. and Metz, M. 2014. v.net.allpairs - Computes the shortest path 
between all pairs of nodes in the network. GRASS GIS code. Available at: 
<https://trac.osgeo.org/grass/browser/grass/branches/releasebranch_7_2/vector/v.net.allpairs> 
[Accessed November 2020]. 



19                                                                                                                                                             MARQUES, S.; PITOMBO, 
C. 

Bulletin of Geodetic Sciences. 27(2): e2021019, 2021. 

Cambardella, C. A. Moorman, T. B. Novak, J. M. Parkin, T. B. Karlen, D. L. Turco, R. F. and Konopka, 
A. E. 1994. Field‐scale variability of soil properties in central Iowa soils. Soil science society of 
America journal, 58(5), pp1501-1511. doi: 
https://doi.org/10.2136/sssaj1994.03615995005800050033x 

Cardozo, O. D. García-Palomares, J. C. and Gutiérrez, J. 2012. Application of geographically 
weighted regression to the direct forecasting of transit ridership at station-level. Applied 
Geography, 34(Supplement C), pp548–558. doi: https://doi.org/10.1016/j.apgeog.2012.01.005 

Cervero, R. 2006. Alternative Approaches to Modeling the Travel-Demand Impacts of Smart 
Growth. Journal of the American Planning Association, 72(3), pp285–295. doi: 
https://doi.org/10.1080/01944360608976751 

Chakour, V. and Eluru, N. 2013. Examining the Influence of Urban form and Land Use on Bus 
Ridership in Montreal. Procedia - Social and Behavioral Sciences, 104(Supplement C), pp875–884. 
doi: https://doi.org/10.1016/j.sbspro.2013.11.182 

Chakour, V. and Eluru, N. 2016. Examining the influence of stop level infrastructure and built 
environment on bus ridership in Montreal. Journal of Transport Geography, 51(Supplement C), 
pp205–217. doi: https://doi.org/10.1016/j.jtrangeo.2016.01.007 

Chiou, Y. C. Jou, R. C. and Yang, C. H. 2015. Factors affecting public transportation usage rate: 
Geographically weighted regression. Transportation Research Part A: Policy and Practice, 78, 
pp161-177. doi: https://doi.org/10.1016/j.tra.2015.05.016 

Choi, J. Lee, Y. J. Kim, T. and Sohn, K. 2012. An analysis of Metro ridership at the station-to-station 
level in Seoul. Transportation, 39(3), pp705–722. doi: https://doi.org/10.1007/s11116-011-9368-
3 

Chow, L.-F. Zhao, F. Liu, X. Li, M.-T. and Ubaka, I. 2006. Transit Ridership Model Based on 
Geographically Weighted Regression. Transportation Research Record, 1972, pp105–114. doi: 
https://doi.org/10.3141/1972-15 

Chu, X. 2004. Ridership models at the stop level. National Center for Transit Research: University 
of South Florida. 

Cressie, N. A. C. 1993. Statistics for spatial data. John Wiley & Sons, Inc. 

Daya, A. A. and Bejari, H. 2015. A comparative study between simple kriging and ordinary kriging 
for estimating and modeling the Cu concentration in Chehlkureh deposit, SE Iran. Arabian Journal 
of Geosciences, 8(8), pp6003–6020. doi: https://doi.org/10.1007/s12517-014-1618-1 

Dill, J. Schlossberg, M. Ma, L. and Meyer, C. 2013. Predicting Transit Ridership at Stop Level: Role 
of Service and Urban Form. In: 92nd Annual Meeting of the Transportation Research Board, 
Washington, United States of America, 13-17 January 2013. 

Fotheringham, A. S. Brunsdon, C. and Charlton, M. 2003. Geographically weighted regression: the 
analysis of spatially varying relationships. John Wiley & Sons. 

Gan, Z. Feng, T. Yang, M. Timmermans, H. and Luo, J. 2019. Analysis of Metro Station Ridership 
Considering Spatial Heterogeneity. Chinese Geographical Science, 29(6), pp1065–1077. doi: 
https://doi.org/10.1007/s11769-019-1065-8 

George, P. and Kattor, G. J. 2013. Forecasting Trip Attraction Based On Commercial Land Use 
Charateristics. International Journal of Research in Engineering and Technology, 2(9), pp471–479. 



Applying multivariate geostatistics for transit ridership modeling at the bus stop level.                                                      20 

Bulletin of Geodetic Sciences. 27(2): e2021019, 2021. 

GeoSampa. São Paulo predominant land use in 2016. [online] Available at: 
<http://geosampa.prefeitura.sp.gov.br/PaginasPublicas/_SBC.aspx> [Accessed February 2020]. 

Goovaerts, P. 1997. Geostatistics for Natural Resources and Evaluation. Oxford University Press. 

Gutiérrez, J. Cardozo, O. D. and García-Palomares, J. C. 2011. Transit ridership forecasting at 
station level: an approach based on distance-decay weighted regression. Journal of Transport 
Geography, 19(6), pp1081–1092. doi: https://doi.org/10.1016/j.jtrangeo.2011.05.004 

Hiemstra, P. H. Pebesma, E. J. Heuvelink, G. B. M. and Twenhöfel, C. J. W. 2010. Using rainfall radar 
data to improve interpolated maps of dose rate in the Netherlands. Science of The Total 
Environment, 409(1), pp123–133. doi: https://doi.org/10.1016/J.SCITOTENV.2010.08.051 

Hollander, Y. and Liu, R. 2008. The principles of calibrating traffic microsimulation models. 
Transportation, 35(3), pp347–362. doi: https://doi.org/10.1007/s11116-007-9156-2 

IBM 2016. IBM SPSS Statistics 24 Core System User's Guide. International Business Machines. 
[online] Available at: 
<ftp://public.dhe.ibm.com/software/analytics/spss/documentation/statistics/24.0/en/client/Ma
nuals/IBM_SPSS_Statistics_Core_System_User_Guide.pdf> [Accessed November 2019]. 

Kerkman, K. Martens, K. and Meurs, H. 2015. Factors Influencing Stop-Level Transit Ridership in 
Arnhem–Nijmegen City Region, Netherlands. Transportation Research Record, 2537(1), pp23-32. 
doi: https://doi.org/10.3141/2537-03 

Kiš, I. M. 2016. Comparison of ordinary and universal kriging interpolation techniques on a depth 
variable (a case of linear spatial trend), case study of the šandrovac field. Mining-geological-
petroleum engineering bulletin, 31(2), pp41–58. doi: https://doi.org/10.17794/rgn.2016.2.4 

Krige, D. G. 1951. A statistical approach to some basic mine valuation problems on the 
Witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6), pp119–
139. 

Liu, W. Du, P. and Wang, D. 2015. Ensemble learning for spatial interpolation of soil potassium 
content based on environmental information. PLoS ONE, 10(4), pp1-11. doi: 
https://doi.org/10.1371/journal.pone.0124383 

Lopes, B. S. Brondino, C. N. and Rodrigues da Silva, N. A. 2014. GIS-Based Analytical Tools for 
Transport Planning:  Spatial Regression Models for Transportation Demand Forecast. ISPRS 
International Journal of Geo-Information, 3(2), pp565-583. doi: 
https://doi.org/10.3390/ijgi3020565 

Marques, S. F. 2019. Estimativa do volume de passageiros ao longo de uma linha de transporte 
público por ônibus a partir da Geoestatística. MSc. University of São Paulo. doi: 
https://doi.org/10.11606/D.18.2019.tde-26042019-110232. 

Marques, S. F. and Pitombo, C. S. 2021. Ridership Estimation Along Bus Transit Lines Based on 
Kriging: Comparative Analysis Between Network and Euclidean Distances. Journal of 
Geovisualization and Spatial Analysis, 5, 7. doi: https://doi.org/10.1007/s41651-021-00075-w 

Marques, S. F. and Pitombo, C. S. 2019. Estimativa do volume de passageiros ao longo de uma 
linha de transporte público por ônibus a partir da Geoestatística. Transportes, 27(3), pp15–35. doi: 
https://doi.org/10.14295/transportes.v27i3.2007 

Matheron, G. 1963. Principles of geostatistics. Economic Geology, 58(8), pp1246–1266. 



21                                                                                                                                                             MARQUES, S.; PITOMBO, 
C. 

Bulletin of Geodetic Sciences. 27(2): e2021019, 2021. 

Matheron, G. 1971. The Theory of Regionalized Variables and Its Applications. Paris: Les Cahiers 
du Centre de Morphologie Mathematique in Fontainebleu. 

Metrô 2019. 2017 Origin and Destination Survey. Companhia do Metropolitano De São Paulo, 
Secretaria Estadual dos Transportes Metropolitanos. [online] Available at: 
<http://www.metro.sp.gov.br/pesquisa-od/> [Accessed November 2019]. 

Moran, P. A. P. 1948. The interpretation of statistical maps. Journal of the Royal Statistical Society. 
Series B (Methodological), 10(2), pp243–251.  

Mubarak, N. Hussain, I. Faisal, M. Hussain, T. Shad, M. Y. AbdEl-Salam, N. M. and Shabbir, J. 2015. 
Spatial Distribution of Sulfate Concentration in Groundwater of South-Punjab, Pakistan. Water 
Quality, Exposure and Health, 7(4), pp503–513. doi: https://doi.org/10.1007/s12403-015-0165-7 

Nalder, I. A. and Wein, R. W. 1998. Spatial interpolation of climatic Normals: test of a new method 
in the Canadian boreal forest. Agricultural and Forest Meteorology, 92(4), pp211–225. doi: 
https://doi.org/10.1016/S0168-1923(98)00102-6 

Olea, R. A. 2006. A six-step practical approach to semivariogram modeling. Stochastic 
Environmental Research and Risk Assessment, 20(5), pp307–318. doi: 
https://doi.org/10.1007/s00477-005-0026-1 

Oliver, M. A. and Webster, R. 2015. Basic steps in geostatistics: the variogram and kriging. 
Springer.  

Ortúzar, J. D. and Willumsen, L. G. 2011. Modelling Transport. John Wiley & Sons. 

Papritz, A. 2020a. georob: Robust Geostatistical Analysis of Spatial Data. R package version 0.3-13. 
[online] Available at: <https://CRAN.R-project.org/package=georob> [Accessed November 2020]. 

Papritz, A. 2020b. Tutorial and Manual for Geostatistical Analyses with the R package georob. 
Available at: <https://cran.r-project.org/web/packages/georob/vignettes/georob_vignette.pdf> 
[Accessed November 2020]. 

Pendyala, R. M. Shankar, V. N. and McCullough, R. G. 2000. Freight Travel Demand Modeling: 
Synthesis of Approaches and Development of a Framework. Transportation Research Record, 
1725(1), pp9–16. doi: https://doi.org/10.3141/1725-02 

Pulugurtha, S. S. and Agurla, M. 2012. Assessment of models to estimate bus-stop level transit 
ridership using spatial modeling methods. Journal of Public Transportation, 15(1), pp33–52. 
Available at: <https://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1095&context=jpt> 
[Accessed in November 2020]. 

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. [online] Available at: <https://www.R-project.org/> 
[Accessed in November 2020]. 

Ryan, S. and Frank, L. 2009. Pedestrian Environments and Transit Ridership. Journal of Public 
Transportation, 12(1), pp39–57. doi: https://doi.org/10.5038/2375-0901.12.1.3 

Ribeiro Jr., P. J. and Diggle, P. J. 2016. geoR: Analysis of Geostatistical Data. R package version 1.7-
5.2. [online] Available at: <https://CRAN.R-project.org/package=geoR> [Accessed in November 
2020]. 



Applying multivariate geostatistics for transit ridership modeling at the bus stop level.                                                      22 

Bulletin of Geodetic Sciences. 27(2): e2021019, 2021. 

Sarlas, G. and Axhausen, K. W. 2016. Exploring spatial methods for prediction of traffic volumes. 
In: 16th Swiss Transport Research Conference (STRC 2016). Monte Verità, Switzerland, 18-20 May 
2016. doi: https://doi.org/10.3929/ethz-b-000116988 

Seo, Y. Kim, S. and Singh, V. P. 2015. Estimating Spatial Precipitation Using Regression Kriging and 
Artificial Neural Network Residual Kriging (RKNNRK) Hybrid Approach. Water Resources 
Management, 29(7), pp2189–2204. doi: https://doi.org/10.1007/s11269-015-0935-9 

Shamo, B. Asa, E. and Membah, J. 2015. Linear Spatial Interpolation and Analysis of Annual 
Average Daily Traffic Data. Journal of Computing in Civil Engineering, 29(1), pp4014022. doi: 
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000281 

Sun, L.-S. Wang, S.-W. Yao, L.-Y. Rong, J. and Ma, J.-M. 2016. Estimation of transit ridership based 
on spatial analysis and precise land use data. Transportation Letters, 8(3), pp140-147. doi:  
https://doi.org/10.1179/1942787515Y.0000000017 

Taharin, M. R. and Roslee, R. 2017. Comparison of Cohesion (c’), and Angle of Internal Friction (Ф’) 
Distribution in Highland Area of Kundasang by using Ordinary Kriging and Simple Kriging. 
Geological Behavior, 1(1), pp16–18. doi: https://doi.org/10.26480/gbr.01.2017.16.18 

Varagouli, E. G. Simos, T. E. and Xeidakis, G. S. 2005. Fitting a multiple regression line to travel 
demand forecasting: The case of the prefecture of Xanthi, Northern Greece. Mathematical and 
Computer Modelling, 42(7), pp817–836. doi: https://doi.org/10.1016/j.mcm.2005.09.010 

Viswanathan, R. Jagan, J. Samui, P. and Porchelvan, P. 2015. Spatial Variability of Rock Depth Using 
Simple Kriging, Ordinary Kriging, RVM and MPMR. Geotechnical and Geological Engineering, 33(1), 
pp69–78. doi: https://doi.org/10.1007/s10706-014-9823-y 

Wang, F. 2001. Explaining Intraurban Variations of Commuting by Job Proximity and Workers’ 
Characteristics. Environment and Planning B: Planning and Design, 28(2), pp169–182. doi: 
https://doi.org/10.1068/b2710 

Wang, C. and Zhu, H. 2016. Combination of Kriging methods and multi-fractal analysis for 
estimating spatial distribution of geotechnical parameters. Bulletin of Engineering Geology and the 
Environment, 75(1), pp413–423. doi: https://doi.org/10.1007/s10064-015-0742-9 

Yan, X. and Su, X. G. 2009. Linear regression analysis: theory and computing. World Scientific. 

Zhang, D. and Wang, X. C. 2014. Transit ridership estimation with network Kriging: A case study of 
Second Avenue Subway, NYC. Journal of Transport Geography, 41, pp107–115. doi: 
https://doi.org/10.1016/j.jtrangeo.2014.08.021 

Zhao, F. Chow, L. F. Li, M. T. Ubaka, I. and Gan, A. 2003. Forecasting transit walk accessibility: 
Regression model alternative to buffer method. Transportation Research Record, 1835, pp34–41. 
doi: https://doi.org/10.3141/1835-05 


