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Abstract:

Many efforts have been made to understand climatic and hydrological variables’ variability, magnitude, and 
standards. In this sense, spatial data has been a fundamentally important tool in supporting the development of 
agriculture and environmental management research. We start this review by giving a brief overview of the use of 
satellites in Brazilian agriculture. Besides that, we present a couple of examples of satellite applications in managing 
water resources in agriculture. The second part of this review illustrates a detailed scenario concerning the orbital 
sensors available for water applications in agriculture. Finally, we provide a synthesis of the future of satellites in 
agriculture in terms of nanosatellites, artificial intelligence, and onboard processing.
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1. Introduction

Spatial data brings a more inclusive approach to the agricultural sector, ranging from the large to the small 
producer, offering resources and methodologies that allow the recovery of old management practices even more 
assertively. The variability present in the field, which today can be observed and defined through management zones 
located even in small cultivation areas, can be explained through the learning acquired throughout history (Molin et 
al. 2015). In this sense, precision agriculture is a management strategy that combines advanced sensors associated 
with information technology to improve the productivity and quality of modern agriculture (Singh and Singh 2020).

Nowadays, the challenges in agriculture are related to the loss of agricultural land and the decreased varieties 
of crops regarding climate change, soil erosion, and flora loss. Besides that, water management for agriculture 
is becoming increasingly complex, mainly because of climate change. This subject is already considered in the 
scientific community and requires government attention. Moreover, there are plenty of challenges in agriculture 
involving resources, according to Saad et al. (2020): water pollution monitoring, water reuse, monitoring water 
pipeline distribution network for irrigation, drinking water for livestock, evapotranspiration, hydrological cycle, 
etc. The current sustainability challenges, food security, and climate change encourage researchers to adopt and 
learn new technologies. One example is the field of nanotechnology as a new source of key improvements for the 
agricultural sector (Parisi et al. 2015). Nanotechnology has the prospective to improve agriculture with novel tools 
(Prasad et al. 2017). The “Internet of Things” is also an up-and-coming family of technologies capable of offering 
many solutions for the modernization of agriculture (Tzounis et al. 2017).

Regarding spatial data, the development and advancement of satellite constellation technology allow for more 
excellent connectivity in cities and the countryside and bring the possibility of more excellent monitoring and data 
collection capacity. The combination of these factors with computational advances, data infrastructure, analysis, 
and specific interpretations has increased the prospects for using and applying remote sensors in the agricultural 
sector (Jarman et al. 2018). This fact brings new possibilities for contributing to the provision of services, generation 
of products, and decision-making in the agricultural sector. However, it also presents a challenge in ensuring that 
the latest technological solutions are correctly linked to production capacity, thus being used to offer the gains 
necessary to meet sustainable development. Used as a support methodology in agricultural management based on 
the spatial variability of the elements that influence the productivity of crops, orbital sensors bring today greater 
capacity and facility in elaborating spatialized analyses to subsidize agricultural management decision-making. As 
a result, products originating from low spatial resolution sensors have been increasingly applied in climate studies, 
such as the assessment of ocean temperature on a global scale, the monitoring of events such as El Niño and La 
Niña and the development of meteorological and climatological forecast models (Shiratsuchi et al. 2014). Another 
innovation factor in the field is the inclusion of methodologies based on temporal analysis by vegetative indexes, 
which are increasingly used in the context of agricultural activities. This paper aims to present a review of the use of 
satellites for water applications in agriculture.

2. Applications in the Management of Water Resources in Agriculture

With record crop numbers, Brazil is currently on a climb to become the world’s largest producer in 
the coming years. According to estimates by the Brazilian Institute of Geography and Statistics (IBGE), the 
Brazilian harvest of grains is expected to reach a record 264.5 million tons in 2021. Thus, production should 
surpass by 4.1% that of 2020, which totaled 254.1 million tons (IBGE, 2021). With legally available and arable 
areas, a favorable climate for production throughout the year, and the expansion of the technoscientific 
sector in production in initially infertile soils, Brazil is today the main hope of global society in increasing food 
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production, intending to achieve the production necessary to meet the population increase in the next 30 
years (Ministry of Agriculture, 2020).

To reach its current position in the world scenario, scientific technologic advancement has been essential 
along with logistical and management aspects, which are fundamental today for development in a globalized and 
competitive trade. This fact only reiterates the need for technological updating to be continuous (Formaggio and 
Sanches, 2017). Thus, using satellites in agriculture directly impacted the productive sector in the regional, national, 
and global context. The ability to make decisions supported by maps and positional tools directly influenced 
the form of crop management, boosting productivity numbers, reducing production cycle costs, and minimizing 
environmental impacts through zoning and localized applications. However, agricultural expansion and the search 
for more outstanding food production bring factors that deserve to be carefully observed. What is to be monitored 
is a gradual increase in the scarcity of natural resources, an increase motivated by the growing search for energy 
and products from agriculture. Aiming at food security and support for sustainable causes, the agricultural sector 
has sought to optimize the production system, operating crop management with minimum input applications and 
greater crop productivity. This line of action makes the use of technologies in agriculture gain more and more 
followers, bringing technoscientific development closer to the field (Molin et al. 2015).

Examples are products from sensors with low spatial resolution, which are increasingly applied in climate 
studies. For example, we can cite the temperature assessment of the oceans, monitoring events such as El Niño and 
La Niña and developing forecast models (Shiratsuchi et al. 2014; van Oldenborgh et al. 2021). These phenomena 
have a high impact on the productive cycle of crops. However, a specific challenge is obtaining a more excellent food 
production using a lower amount of water. This is a significant paradigm and may become even more complicated if 
the climate changes projected for the coming decades correct it (Stocker et al. 2013). Based on this fact’s limitations 
to the productive scenario, a new aspect of using technologies has been increasingly applied in research and the 
market: using satellites as a support tool in agricultural water management.

In this context, orbital sensors emerge as tools capable of generating subsidies for the rational management 
of water resources in areas of agricultural development in scenarios of intense climate change and variation 
in land use and occupation to improve. In this way, water use from precipitation and minimizing waste and 
water deficit problems that arise in various world regions. With the intense evolution in the sector, the need to 
incorporate information technology becomes essential, especially regarding the capacity to optimize and adapt 
existing applications and processes (Martins, 2015). It is understood that investigating trends over time and the 
temporal behavior of water resources stored in Brazilian hydrographic regions are relevant information to extract 
maximum efficiency in using this natural asset that directly impacts the supply to agriculture, society, and industrial 
production (Rosenhaim et al. 2018). Nowadays, temporal observations through artificial satellites further solidify 
a set of investigative devices ready to assist in the monitoring and study of water resources, being thus applied 
in different regions of the planet, in a wide variety of applications, such as in studies of the case presented by: 
Awange et al. (2013) and Ndehedehe et al. (2016) in Africa, Chen et al. (2016) in Australia, Molodtsova et al. 
(2016) in EUA and Cao, Chen and Liu (2022) in China. In Brazil, some investigations to analyze the groundwater 
and river stage fluctuations (Marques et al. 2020), the changes in the water resources in the Brazilian Northeast 
(Silva et al. 2020), and the evaluation of satellite precipitation products for hydrological modeling in the Brazilian 
Cerrado (Amorim et al. 2020) have been conducted in the last years.

To monitor one of the variables that directly influence the hydrological cycle, various applications are used 
to quantify EvapoTranspiration (ET) in large agricultural precincts (Kustas and Norman, 1996; Courault et al. 2005; 
Zhang et al. 2016; Wanniarachchi et al. 2022). Within these applications, algorithms such as Surface Energy Balance 
Algorithm for Land (SEBAL), Mapping Evapotranspiration at high resolution using Internalized Calibration (METRIC) 
(Allen et al. 2007) (Figure 1), and Simple Algorithm for Evapotranspiration Recovery (SAFER) (Teixeira, 2010; Teixeira 
et al., 2013, 2017) appear as potential tools for obtaining ET, both based on the surface energy balance, one of the 
most used methodologies.
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Operating with different objectives than conventional Remote Sensing, the GRACE (Gravity Recovery and 
Climate Experiment) mission emerges as an essential tool for studies related to potential water management. The 
task is used in research whose main objective is monitoring total water storage. Launched in 2002, it comes from 
a partnership between NASA (National Aeronautics and Space Administration) and the DLR (German Aerospace 
Center). According to Di Long et al. (2013), the analysis of signals from the GRACE satellites makes it possible to 
estimate the variation of water masses on the continental surface with an accuracy of 1.5 cm at a scale of 300 km, 
through a system composed of two satellites in the same orbit, separated at approximately 200 km.

Among other applications using the GRACE mission, we can highlight the gravity maps of the Earth, which 
provide information regarding the behavior of Total Water Storage (TWS), composed of the set of groundwater, 
surface water, and soil moisture, according to applications presented on Brazilian territory. Getirana et al. (2014) 
use data from the GRACE mission to identify and quantify the impacts of the prolonged drought that affected the 
Southeast and Northeast of Brazil from 2012 to 2015, offering estimates of impacted areas and specific water 
scarcity in the region (Rosenhaim et al. 2018). Figure 2 shows an example of a TWS study in Brazil.

Source: The authors.

Figure 1: Products generated by Metric EEFLUX application (RGB, Evapotranspiration, NDVI, and Surface 
Temperature).
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It is also essential to highlight the ability to acquire information resulting from artificial satellites, such as 
the precipitation provided by the TRMM (Tropical Rainfall Measuring Mission) through the rainfall product (3B43), 
a complement to temporal hydrographic analyses (Rosenhaim et al. 2018). The TRMM mission is the product 
of a partnership between the US and Japan. Launched aboard the H-II F6 spacecraft on 28 November 1997, in 
Tanegashima, the TRMM product is an algorithm that concatenates data from multiple orbital sensors, thus resulting 
in global precipitation data (Huffman et al. 2007). Analyzing the proposal of this mission in a broader way, the great 
advantage is the coverage of the data, acting even in places with a low density of meteorological station networks. 
In-situ sampling observations available at the INMET and the National Water and Basic Sanitation Agency (Agência 
Nacional de Águas e Saneamento Básico - ANA) rainfall stations are a fundamental complement to legitimizing the 
products obtained by satellites (Rosenhaim et al. 2018).

Another innovation factor in the field is the inclusion of methodologies based on temporal analysis by vegetative 
indices, which have been increasingly applied in agricultural activities. NDVI, for example, offers the possibility of 
identifying the dynamic behavior of vegetation at different time scales, which brings a greater understanding of 
phenological cycles of short and long duration and, consequently, makes it possible to interpret the dynamics of 
transition in land use (Bradley et al. 2007). Silveira et al. (2015) bring an application of the NDVI index aimed at leaf 
water potential. The authors investigated the correspondences between vegetation indices and coffee, irrigated, 
and dryland leaf water potential in the study. Based on statistical analysis by Pearson correlation, this study found 
that the NDVI showed a positive correlation with the leaf water potential of coffee trees in a dry cropping system. 
However, no significant correlation was found for irrigated cultivation. NDVI has known saturation problems and is 
unsuitable for water studies. Figure 3 shows an example between NDVI and RGB images.

Source: The authors.

Figure 2: TWS estimated using GRACE data, in Brazil, from January to December of 2010.
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In terms of water management applications, based on imaging methodologies and vegetative index 
generation, SETMI (Spatial EvapoTranspiration Modeling Interface) emerges as a significant revolution in managing 
water resources in central pivot irrigation. The Water leads the research for Food research group at the University 
of Nebraska. The algorithm uses models of energy balance and soil water balance, which enables the modeling of 
ET and its use in the prescription of irrigation events. The main objective is the generation of VRI (Variable Rate 
Irrigation). In Figure 4, it is possible to observe the input products in the SETMI Model, which returns the user the 
VRI recommendation.

Source: The authors.

Figure 3: The NDVI is one of the most used vegetative indices in studies aimed at analyzing vegetative vigor, soil 
moisture, and leaf water potential.

Source: Adapted from Neale, 2018.

Figure 4: SETMI Model methodology, which enables the generation of irrigation recommendations at a variable 
rate in the central pivot through orbital sensor products.
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The possibility of bringing a heterogeneous scenario to a center pivot irrigation system, presenting the 
variability, and applying the absolute need for crop water compensation for each block raises expectations that the 
methodology will significantly reduce water use in irrigated crops. In general, applying orbital sensors in managing 
water resources in agriculture has become essential in planning and rationalizing water use.

3. Satellites in the Management of Water Resources in Agriculture

According to Dakir et al. (2021), some recent studies have shown the possibility of using Earth Observation 
Satellites (EOS) to manage the agricultural sector. The applications make it possible to detect agricultural diseases, 
which is likely to establish a suitable way of intervention and an adequate amount of pesticide to apply (Miranda 
et al. 2020; Sambasivam and Opiyo, 2020). Other applications concern the determination of soil fertility (Wu et al. 
2019), yield, biomass production (Ashapure et al. 2020), and the determination of water requirement at the plant 
scale for precision irrigation (Tao et al. 2014; de Lara et al. 2019; Zhang et al. 2022).

In terms of EOS applications for hydro-climatological management, Table 1 presents a list of sensors and missions 
acting to obtain data that directly or indirectly impact the understanding hydrological cycle and, consequently, 
agriculture’s productive capacity. They are classified as “Optical”, “Meteorological”, “Radar”, and “Gravity” sensors 
or missions. It is worth noting that some applications are typical to various sensors, varying the scale. Furthermore, 
some sensors or missions are no longer available to perform agricultural studies since we retired, but we prefer to 
maintain the information.

Table 1: Orbital sensors acting in acquiring hydroclimatic data applied to agriculture.

Sensor Measured Variables Spatial
Resolution

Temporal
Resolution

Website for 
Information

OPTICAL SENSORS

Sentinel 2

Detection and delimitation of water 
bodies, Evapotranspiration, Surface 
Temperature, Aquifer Recharge, 
Water stress, Reservoir Water 
Quality Monitoring, Humidity, 
Central Pivot Quantification

10 m - 30 m 6 - 12 days https://sentinel.esa.
int/web

MODIS (Moderate 
Resolution Imaging 
Spectroradiometer) 

Aqua/Terra

Surface Water Quality, Surface 
Temperature, Cloud Mask Fraction, 
Maximum Cloud Temperature, Near-
Infrared Water Vapor, Precipitable 
Water Vapor, Water Body Detection 
and Delimitation, Evapotranspiration, 
Water Stress, Humidity

500 m 1 - 2 days https://modis.gsfc.
nasa.gov/

Landsat 5,7,8 and 9

Evapotranspiration, Surface 
Temperature, Detection and 
Delimitation of Water Bodies, Water 
Stress, Quantification of Central 
Pivots, Humidity, Water Productivity 
in Basin, Water Volume Monitoring 
in Reservoirs, Soil Moisture

30 m 16 days https://landsat.gsfc.
nasa.gov/

Continue...
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Sensor Measured Variables Spatial
Resolution

Temporal
Resolution

Website for 
Information

OPTICAL SENSORS

WorldView-1,2,3 
and 4

Detection and Delimitation of Water 
Bodies, Quantification of Central 
Pivots, Monitoring of Water Volume 
in Reservoirs, Evapotranspiration, 
Humidity, Surface Temperature

0.31 - 0.46 
m 1 - 3 days https://worldview.

earthdata.nasa.gov/

Pleiades 1A and 2A

Detection and Delimitation of Water 
Bodies, Quantification of Central 
Pivots, Monitoring of Water Volume 
in Reservoirs, Validation of Water 
Turbidity

0.50 m 26 days https://pleiades-cnes.
fr/drupal/

KompSat-3 and 3A

Detection and Delimitation of Water 
Bodies, Quantification of Central 
Pivots, Water Volume Monitoring in 
Reservoirs

0.55 - 0.70 
m 28 days

https://eos.com/find-
satellite/kompsat-3-

3a/

QuickBird

Detection and Delimitation of Water 
Bodies, Quantification of Central 
Pivots, Monitoring of Water Volume 
in Reservoirs, Evapotranspiration, 
Water Stress, Surface Temperature

0.65 m 1 - 3.5 days
https://earth.esa.int/
eogateway/catalog/

quickbird-full-archive

Gaofen-2

Detection and Delimitation of Water 
Bodies, Quantification of Central 
Pivots, Water Volume Monitoring in 
Reservoirs

0.80 m 5 days No website

TripleSat

Detection and Delimitation of Water 
Bodies, Quantification of Central 
Pivots, Water Volume Monitoring in 
Reservoirs

0.80 m Daily
https://www.21at.

sg/productsservices/
triplesat-constellation/

IKONOS II

Detection and Delimitation of Water 
Bodies, Quantification of Central 
Pivots, Water Volume Monitoring in 
Reservoirs, Humidity, Water Stress, 
Digital Elevation Model, Surface 
Temperature, Evapotranspiration,

0.82 m 1 - 3 days
https://earth.esa.int/
eogateway/missions/

ikonos-2

SkySat-1 and 2

Detection and Delimitation of Water 
Bodies, Quantification of Central 
Pivots, Water Volume Monitoring in 
Reservoirs

0.80 m 4 - 5 days
https://earth.esa.int/
eogateway/missions/

skysat

TerraSAR-X

Detection and Delimitation of Water 
Bodies, Quantification of Central 
Pivots, Water Volume Monitoring in 
Reservoirs, Digital Elevation Model

0.25 - 40 m 11 days https://terrasar-x-
archive.terrasar.com/

Table 1: Continuation.

Continue...
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Sensor Measured Variables Spatial
Resolution

Temporal
Resolution

Website for 
Information

OPTICAL SENSORS

SPOT 3 to 7

Detection and Delimitation of 
Water Bodies, Quantification of 
Central Pivots, Monitoring of Water 
Volume in Reservoirs, Detection 
and Prediction of Climatological 
Phenomena, Water Stress, Humidity

1.5 m 1 - 3 days
https://earth.esa.int/
eogateway/missions/

spot/

SuperView-1

Detection and Delimitation of Water 
Bodies, Quantification of Central 
Pivots, Water Volume Monitoring in 
Reservoirs

0.5 m 2 days https://eos.com/find-
satellite/superview-1/

CBERS-1, 2, 2B, 3, 4 
and 04A

Detection and Delimitation of Water 
Bodies, Quantification of Central 
Pivot, Monitoring of Water Volume 
in Reservoirs, Surface Temperature 
Change Phenomena

5 - 40 m 26 days http://www.cbers.
inpe.br/

METEOROLOGICAL SENSORS

JPSS (Joint Polar 
Satellite System)

Weather Monitoring, Surface 
Temperature, Cloud Development, 
Precipitation, Atmospheric 
Temperature, Water Vapor,

No 
information Daily https://www.jpss.

noaa.gov/

METEOSAT
(Meteorological 

Satellite)

Climate monitoring, Weather 
Forecasts, Water Vapor, Cloud 
Formation and Development, 
Surface Temperature

2.5 km 30 minutes https://www.
eumetsat.int/

GOES 
(Geostationary 

Operational 
Environmental 

Satellites)

Atmospheric Phenomena, Cloud 
Formation and Development, 
Surface Temperature, Water Vapor, 
Vertical Structure of Atmosphere, 
Atmosphere Contained Steam, 
Weather Forecasts

1 km 30 minutes https://www.goes.
noaa.gov/

MERRA Model and 
MERRA-2 Model

Total water vapor, Soil water profile, 
Cloud water conversion loss, Total 
precipitable water, Surface soil water 
layer, Open water energy flow, Soil 
water infiltration rate

0.5° - 0.667°
(MERRA)

0.5°- 0.625°
(MERRA-2)

Monthly
https://gmao.gsfc.

nasa.gov/reanalysis/
MERRA/

GLDAS (Global Land 
Data Assimilation 

System)

Evapotranspiration, Soil Moisture, 
Canopy Water Evaporation, Soil 
Temperature, Groundwater Runoff, 
Rain Precipitation, Surface Water 
of plant canopy, Precipitable Water 
Vapor

0.25° x 0.25°
1° x 1° Monthly https://ldas.gsfc.nasa.

gov/gldas

NLDAS
(North American 

Land Data 
Assimilation 

System)

Evapotranspiration, Soil Moisture, 
Surface and Subsurface Runoff 0.25° x 0.25° Monthly https://ldas.gsfc.nasa.

gov/

Table 1: Continuation.

Continue...
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Sensor Measured Variables Spatial
Resolution

Temporal
Resolution

Website for 
Information

METEOROLOGICAL SENSORS
NCA-LDAS

(National Climate 
Assessment - Land 
Data Assimilation 

System)

Evapotranspiration, Irrigated Water 
Rate 1.25° x 1.25° Daily https://ldas.gsfc.nasa.

gov/nca-ldas

FLDAS
(Famine Early 

Warning Systems 
Network -FEWS 
NET/ Land Data 

Assimilation 
System)

Total Evapotranspiration, Specific 
Moisture, Underground Flow, 
Soil Heat Flow, Surface Runoff, 
Latent Heat Flow, Rain Flow, Soil 
Temperature

0.1° x 0.1° Monthly https://ldas.gsfc.nasa.
gov/fldas

TRMM (
Tropical Rainfall 

Measuring Mission)

Precipitation, Liquid Water Cloud,
Quantification of Water Vapor, 
Intensity of Precipitation in the 
Atmosphere, Three-Dimensional 
Mapping of Storm Structures

0.25° x 0.25°
0.50° x 0.50° 91 minutes https://trmm.gsfc.

nasa.gov/

ASTER (Advanced 
Spaceborne 

Thermal Emission 
and Reflection
Radiometer)

Cloud Classification, Surface 
Temperature, 15 m 16 days http://asterweb.jpl.

nasa.gov/

RADAR SENSORS
AMSR-E Water Balance Model 25 km Daily https://aqua.nasa.gov/

AIRS Total Column of Water Vapor,
Mass of Water Vapor on the Surface 1° Daily https://airs.jpl.nasa.

gov/
GRAVITY SENSORS

GRACE (Gravity 
Recovery and 

Climate Experiment) 
and GRACE-FO

Groundwater Storage, Drought 
Monitoring, Water Flow 
Estimates, Hydrological Modeling, 
Evapotranspiration

1° x 1° Monthly https://grace.jpl.nasa.
gov/

GOCE (Gravity Field 
and Steady-State 
Ocean Circulation 

Explorer)

Groundwater Storage 1° x 1° Monthly

https://www.esa.
int/Applications/

Observing_the_Earth/
GOCE

*The spatial resolution of some sensors is expressed just in degree. Each degree corresponds to approximately 111 km.

Table 1: Continuation.

In Table 1, it is possible to observe many optical satellites (optical sensors). On the other hand, it is often 
impossible to guarantee the required images because of unpredictable cloudy weather. In this sense, Synthetic 
Aperture Radar (SAR) data can be acquired regardless of cloudy weather conditions. In precision agriculture, for 
example, optical and SAR data can be used within a growth model to monitor sugar cane growth stage variations 
and predict potential yield across the growing season. Also, to detect the conditional canopy change (e.g., related to 
water stress). The use of optical or microwave sensors (passive and radar) can also identify surface water (streams, 
rivers, lakes, reservoirs), water quality (organic or inorganic constituents), water surface temperature, snow surface 
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area, and water depth. Despite the fact noted above, optical sensors suffer from cloud contamination, making them 
difficult to use for flood detection and mapping, for which the temporal scales are small. In terms of “surface water”, 
High/Medium resolution multispectral sensors and SAR is suitable, which are most effective on larger water bodies 
such as major lakes and rivers. Regarding the “surface water quality” low resolution narrowband multispectral 
sensor (e.g., MODIS) can be used. Concerning the “groundwater” GRACE, GOCE and GRACE-FO gravity missions 
should be considered. These sensors have a gravity gradiometer. The fact of spatial resolution of these missions 
is about 100 km the total water storage changes with satellite observations of gravity can be combined using in-
situ observations High and medium-resolution SAR can be used to detect “soil moisture”, while some atmospheric 
parameters such as “water vapour” can be determined using very low-resolution multispectral sensors (hundreds 
of meters to kilometers).

4. Looking to the Future

The food production system and modern agriculture have often been under external pressures, motivated 
by climate change, low water availability, and a pandemic that has recently directly impacted most sectors 
of society. Such conditions translate into a threat to the environmental and economic balance of production 
systems. Even with innovations and advances in the biotechnology and genetics sector in recent decades, a 
scaled assessment still had shortcomings and deficiencies that until recently were not addressed. However, the 
recent advances in Remote Sensing and computational tools such as Artificial Intelligence, with the possibility 
of quantification, zoning, and integration of systems such as big data in tools with predictive and prescriptive 
capacity, make the agricultural production system reach increasingly expressive results. This fact places 
technoscientific innovations in a position of fundamental importance in agriculture so that food production 
is sufficient to meet the projected increase in demand for the coming decades because population growth 
increasingly reinforces the need for the evolution of constant technology in the industry of remote sensors 
integrated into computer systems (Jung et al. 2021).

4.1 The constellation of small satellites

Until the beginning of the last decade, satellites were built to weigh tons, which required a complex 
organization to launch into orbit. However, this situation has changed since the emergence of nanosatellites. In 
2008, the RapidEye agency launched a constellation of five identical satellites called RapidEye. One of the aims was 
to provide digital images focused on providing solutions for agriculture (Stoll et al. 2012). At this moment, Planet 
Labs Inc. (which acquired RapiedEye) is working on the development of miniature satellites called DOVES, which 
continuously scan the Earth’s surface and structure a constellation of satellites that provide a complete image of the 
Earth daily, with a spatial resolution of 3 to 5 m (Nagel et al. 2020). In total, there are more than 130 nanosatellites 
weighing up to 5 kilos each, which provide coverage of the entire surface of the Earth, monitoring more than 300 
million square kilometers per day (Aasner et al. 2017). So far, the American company Planet is the only company to 
offer this daily imaging of the entire Earth’s surface with such detailed spatial resolutions. Images of the planet are 
made available online, and some are accessible under an open data policy. Also, the new generation of satellites has 
more spectral bands (PLANET, 2018). Daily images can reveal patterns and even sudden changes in water stock and 
availability, which is paramount for monitoring and managing resources and infrastructure and, in addition to its 
fundamental role in agriculture, enabling the obtaining of information relevant to the optimization of the productive 
sector and sustainable growth (Jarman et al. 2018).
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The trend is for nanosatellites to gain more and more space in the market, given their low cost and short 
production cycle, characteristics that make the constellations of these small satellites accessible. Consequently, the 
result in the expansion of the frequency of high-resolution images aimed at Earth observation remote sensing for 
monitoring dynamic processes. New nanosatellite missions are being proposed to deal with specific applications, such 
as natural disasters, or to test improvements in these satellites’ spatial, temporal, and radiometric resolutions. The 
unprecedented combination of high spatial and temporal resolution offered by the constellations of nanosatellites, 
associated with efforts to improve the quality of the sensor, is promising. It may represent a trend for space agencies, 
universities, and private companies to replace large satellites with smaller, cheaper ones (Nagel et al. 2020).

Another example is Spire Global’s constellation, launched on 3 August 2013. Nowadays, the company 
has more than 90 nanosatellites. When complete, Spire plans an entire constellation of over 100 satellites 
simultaneously collect RO measurements. Each satellite has a tiny, low-power, Spire-built GNSS-radio occultation 
receiver and an upward-facing precise orbit determination antenna. The dual-frequency observations allow studies 
on ionospheric total electron content measurements (Forsythe et al. 2020).

4.2 Artificial Intelligence, Dual-Utility and Real-Time Satellites Performance

Agricultural Artificial Intelligence applications are becoming more and more solid. The so-called “deep learning” 
has now become a methodology with great potential in image processing, analysis, and elaboration of results related 
to field production. From weed detection to soil correction recommendations, artificial intelligence today brings the 
possibility of optimizing various stages of the production cycle, which makes its use essential in modern cultivation. 
The methodologies used in machine learning tend to make future decision-making more assertive, as it considers 
numerous factors and variables, such as weather conditions, soil properties, water availability, and even financial 
control (Fountas et al. 2020; Ayoub Shaik, Rasool and Rasheed Lone, 2022).

A big trend in the space market for the next few years is the multi-utility capability of satellites. Data from 
orbital sensors is potentiated when analyzed in the presence of auxiliary data sets. Missions such as NovaSAR, 
for example, will have complementary payloads, AIS and S-band SAR, placed on the same device to increase 
satellite productivity and commercial value. Other examples include the IRIDIUM communication constellation, 
where platforms are designed to be capable of a secondary load. Space is still an environment of opportunities in 
a still restricted market. However, with the trend of expansion and increasing investments in this niche of activity, 
especially in geostationary orbit and low-orbit satellites, companies like UrtheCast tend to invest more and more in 
large space assets (Jarman et al. 2018).

Greater demand for applications aimed at obtaining near real-time data, especially from the commercial and 
military markets, has pressured the space market for the development of geostationary data satellites, such as ESA’s 
European Data Relay Satellite System (EDRS), the first being launched in 2016 (Calzolaio et al. 2020). These satellites 
will allow low-orbit observation sensors to have continuous communication with ground control stations, which will 
facilitate the transfer of real-time data from satellites to the ground.

4.3 Onboard Processing

Satellites today produce a great deal of data. The Sentinel 1 satellite, for example, makes approximately 
1.6 TB/day of data, which is sent to a ground station and further processed. This number becomes even more 
expressive when analyzing situations where the end-user uses only a fraction of this data to extract the desired 
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information. This fact has motivated the development of alterations in the computational structure aboard satellites. 
A great expectation has been generated with the possibility of changes related to extracting irrelevant or low-use 
information. The main objective would be to link the intelligence to the orbital sensors themselves, carrying out the 
filtering processing of the data on the satellite itself. This would reduce data exchange and consequently expand the 
system’s responsiveness (Jarman et al. 2018).

An example of this application is the PhiSat-1 mission. The launch of the European Space Agency (ESA) 
mission took place on 2 September 2020, carrying this satellite, which is a CubeSat (cube-shaped nanosatellites 
weighing less than 1.33 kilograms) (Esposito et al. 2019). PhiSat is approximately 530 km altitude and flies at more 
than 27,500 km/h in a Sun-synchronized orbit. The mission aims to study the Earth, collecting many images of our 
planet (visible and infrared absorption bands). Then, Artificial Intelligence (AI) identifies and discards the images 
that appear with a high incidence of clouds, which results in savings of around 30% in bandwidth, which optimizes 
the process. Ubotica, an Irish startup, built and tested this technology in collaboration with Cosine, a camera maker 
with Intel’s AI on board (Giuffrida et al. 2020).

5. Final Considerations

This paper presented satellite applications for managing water resources and others in agriculture. As 
outlined in this review, satellites enable and enhance water applications in agriculture in many ways, from providing 
positioning information and facilitating communication to delivering wide-scale observations regularly. Depending 
on the type of sensor or mission and the spatial and temporal resolutions, it can be used in water applications. 
Furthermore, combining different types of EOS for a specific application is also possible.

In addition, EOS has been used as a support methodology in agricultural management based on the spatial 
variability of the elements that influence crop productivity, and today bring greater capacity and facility in the 
preparation of specialized analyzes to support decision-making in agricultural management. Within this, the 
performance of professionals specialized in applying spatial data as a management tool in agriculture becomes an 
essential part of disseminating new practices in the agricultural management model and optimizing production 
systems, which raises the prospects of demand for professionals in the area.

Looking into the future, in the next years the space industry is set to play a critical role in the creation of 
‘smarter’ and impactful agricultural solutions driven by the increasing availability of powerful EOS, as well as 
growing data and information expected from connected sensors. Modern agriculture is increasingly developing, 
driven by technological advances in remote sensing, robotic systems, and artificial intelligence, modernization in the 
field allows farmers to produce accurately and transparently, achieving greater productivity and quality, reducing 
environmental impacts, and helping to monitor and predict sudden climate change. This will generate many novel 
research questions and, ultimately, innovative commercial products and services.

There are several challenges regarding computational power, accuracy, and temporality of data and even 
resistance on the part of conservative producers. However, the search for dynamic technological development and 
constant modernization in the countryside bring perspectives that agriculture will no longer walk alone.
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