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Abstract:

Multibeam Echosounders (MBES) are hydrographic tools used primarily to survey the seafloor bathymetry and 
backscatter. Modern MBES systems are not limited to the seafloor, as they can also map water column profiles, which 
holds important biological, thermal and chemical information of oceans and shores. Unfortunately, this feature is 
normally disregarded during routine surveys operations, as it generates a very large amount of data, requiring data 
compression for possible use in future analysis. For the compression, we propose to map the water column data 
into images and to compress each of them using image compressors. We devised two methods: a lossless coder 
based on linear predictors, and a lossy coder based on thresholding followed by lossless coding. Both methods seem 
to better suit the echosounder image data than traditional image coders. We tested our methods in sequences that 
capture different water column activities in the Bay of Brest, France. Results indicate our method outperforms other 
standard image compression methods, ranging from 4 to 70% average gains in compression ratio in lossless coding, 
and equivalent results in lossy coding. Compression-induced distortion was measured as traditional mean squared 
error and as analysis-parameter estimation errors.
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1. Introduction

Modern multibeam echo sounders acquire acoustic backscatter data associated with a set of acoustic beams, 
which are derived from the beamforming process. There are usually hundreds of beams per transmit ping and each 
beam can be associated with one mean backscatter value or with a time series of backscatter samples (Moustier, 
1988; Hughes-Clarke, Mayer and Wells, 1996). These time series are stored under different formats within the 
manufacturer datagram specifications, usually comprising large files. Modern MBES systems are not limited to the 
seafloor (or to the very-shallow sub-bottom), as they have now the ability to register the returned backscatter time 
series from the water column profile, which we will refer to as “water column” for simplicity. The information about 
the water column is often discarded during normal survey operations, as it requires a huge amount of storage space. 
However, in many applications, it is desirable to maintain all the information about the water column. Rather than 
keeping a few samples near the bottom, the water column return signal can be orders of magnitude longer, and the 
data size can be immense. Additionally, one survey line can have thousands of survey pings, and the total amount 
of data in such a survey can have gigantic proportions, with up to ten-fold increases in data storage requirements 
(Beaudoin, 2010). Furthermore, in applications which demand real-time underwater acoustic communications with 
an autonomous underwater vehicle (AUV), this type of data transmission is extremely difficult, almost unfeasible 
(Wynn et al., 2014). Extensive survey results yield very large databases that prevent easy distribution and portability. 
All these facts suggest that data compression is paramount in dealing with water column data.

Multibeam echo sounder (MBES) data and image processing has been addressed by a number of works, 
(e.g. Cervenka and Moustier, 1993; Chavez Jr, 1986; Moustier and Matsumoto, 1993), including the correction 
of geometric distortions (Cobra, Oppenheim and Jaffe, 1992). The inversion of the data to characterize seafloor 
properties has also been discussed in Fonseca and Mayer (2007) and Fonseca and Calder (2005). MBES generates 
large amounts of data and the problem of handling such large data has been relatively ignored in the literature, with 
a few exceptions (Broen 2010). In general, long-term data management in a seafloor survey is usually neglected. 
Transmission and storage are often considered only during or after the acquisition step. These procedures can be 
very costly and time-consuming, since high-bandwidth transmission channels are not available for routine use and 
the backup of very large databases if often inconvenient (NOAA, 2003). A few works have dealt with the compression 
of the sonar data (Wu, Zielinsky and Bird, 1997; Cunha, Figueiredo and Silvestre, 2000; Beaudoin, 2010). Image 
compression applied to the MBES data is often applied to the results of the data analysis derived from the MBES raw 
data. We also applied image compression towards an internal, intermediary, two-dimensional data representation 
which allows for the easy reconstruction of the sonar raw data (Queiroz et al., 2017).

Section 2 discusses the framework of image compression for water column data. Lossless and lossy 
compression techniques are proposed, tested and compared in Sections 3 and 4. Finally, the conclusions of this 
work are presented in Section 5.

2. Image compression for water column data

2.1 Image formation from water column data

Multibeam echo sounders systems typically consist of a transmit/receive pair of transducer arrays disposed 
in a Mills cross configuration. In this configuration, the transmit array generates a sound beam which is broad in one 
direction and narrow in the other, and the receive array captures data orthogonally to the transmit array, narrowly 
in the former direction and broadly in the latter (Figure 1). Through beamforming, the received data can then be 
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discriminated in terms of angles of reception, and a wide line of the water column can be sonified (Colbo et al., 
2014). The echo level (EL) captured at the receive array can be calculated in decibels as

𝐸𝐸𝐸𝐸 = 𝑆𝑆𝐸𝐸 − 2𝑇𝑇𝐸𝐸 + 𝑇𝑇𝑆𝑆

𝑥𝑥 = 𝑟𝑟 cos(𝜃𝜃) ,  𝑦𝑦 = 𝑟𝑟 sin(𝜃𝜃)

𝑀𝑀𝑆𝑆𝐸𝐸 = 1
𝑁𝑁𝑁𝑁 ∑ (10𝑠𝑠[𝑛𝑛]÷10 − 10𝑠𝑠′[𝑛𝑛]÷10)2

𝑁𝑁𝑠𝑠−1

𝑖𝑖=0

𝑀𝑀𝑆𝑆𝐸𝐸𝑑𝑑𝑑𝑑 = 10 log10(𝑀𝑀𝑆𝑆𝐸𝐸)

                                                                             (1)

Where SL, TL and TS are the source level, transmission loss and target strength of the scatterer, respectively. 
TL is dependent on spreading and absorption losses, and TS depends on the target’s size and acoustic properties, 
as well as on the transmit/receive bandwidths and transmitted pulse length.

Figure 1: Multibeam acquisition geometry showing the transmit beam, the received beams and the formed beams 
at the intersection.

The beamforming process applied to the data from the Mills cross configuration generates an image signal 
represented in polar coordinates, as each angle θ is separately insonified, and the radial coordinate 𝑟𝑟 = 𝑇𝑇𝑇𝑇 ÷ 2 
is obtained from the acquired time series as half of the product of propagation time T and the assumed sound 
propagation speed v. The beams can then be converted to Cartesian coordinates x and y as𝐸𝐸𝐸𝐸 = 𝑆𝑆𝐸𝐸 − 2𝑇𝑇𝐸𝐸 + 𝑇𝑇𝑆𝑆

𝑥𝑥 = 𝑟𝑟 cos(𝜃𝜃) ,  𝑦𝑦 = 𝑟𝑟 sin(𝜃𝜃)

𝑀𝑀𝑆𝑆𝐸𝐸 = 1
𝑁𝑁𝑁𝑁 ∑ (10𝑠𝑠[𝑛𝑛]÷10 − 10𝑠𝑠′[𝑛𝑛]÷10)2

𝑁𝑁𝑠𝑠−1

𝑖𝑖=0

𝑀𝑀𝑆𝑆𝐸𝐸𝑑𝑑𝑑𝑑 = 10 log10(𝑀𝑀𝑆𝑆𝐸𝐸)

                                                                        (2)

for proper analysis of the water column and seafloor. The view in Cartesian coordinates is also called fan view 
(Deimling and Weinrebe, 2014). An example of this conversion is shown in Figure 2, where ping 55193 of water 
column data sequence 0072_20130204_090435_Thalia.all is presented in polar and Cartesian coordinates. This 
transformation, however, is not reversible for regularly-sampled Cartesian coordinates: even though r is sampled 
at fixed intervals, the cos( ) and sin( ) functions in Equation (2) invariably return non-integer values. In that 
manner, data compression in polar coordinates is preferable to Cartesian coordinates, because if data is transformed 
to Cartesian coordinates, losses will definitely occur.
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2.2 Nature of water column images

Water column data typically present the following features and artifacts (Deimling and Weinrebe, 2014). First, 
an air bubble wake pattern appears at the beginning of the water column data, due to vessel steering operations, 
specially at the vessel’s bow. Next, sparse features show up, such as marine life (fish, whales, zooplankton etc.), 
gas bubbles, mixing and internal waves, kelp ecosystems and suspended sediment, which are the main interest in 
storing water column data (Colbo et al., 2014). Then, the seafloor is reached, shown as a horizontal bar in fan view 
and as an arc in polar coordinates. Finally, seabed side-lobe echoes can be seen, shown as arcs in both coordinate 
types, due to energy leaks of the beam-formed receive beam pattern, followed by region with no valid values, 
shell-shaped at the bottom of the data in polar coordinates. All of these be seen in Fig. 3. Even though data rates 
for water column data can be extremely high, yielding giga-byte sized files, the geometrical shape of these features 
and artifacts can be exploited during compression, improving a given codec’s rate and/or distortion performances.

Figure 2: Ping 55193 of water column data sequence 0072_20130204_090435_Thalia.all in polar and Cartesian 
coordinates.
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2.3 Data used for tests

As an example, we analyze two study areas in the Bay of Brest: Aulne and Rascass, where water column 
data were acquired. These areas were surveyed with a Kongsberg EM2040 MBES at 200 kHz, 300 kHz, and 400 
kHz (Eleftherakis et al., 2018) on Ifremer’s research vessel Thalia in the framework of the REM2040 annual 
cruises. Bottom samples and photographs show that the seafloor at Aulne is composed of silty sand with shells 
and at Rascass of gravelly mud with shells (Figure 4). Individual pings of the five acquired sequences are shown 
in Figures 2 and 3.

Figure 3: Pings 13039, 12370, 52600 and 13749 of water column data sequences 0056_20130203_123622_Thalia.
all, 0090_20130204_152935_Thalia.all, 0262_20180417_123658_Thalia.wcd and 0091_20130204_155210_

Thalia.all, respectively, in clockwise order. All sequences are presented in polar coordinates.
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3. Lossless compression

If no compression losses can be tolerated prior to water column data analysis, several codecs can be used to 
reduce data rates. In this section, we present the main available codecs, propose a new lossless codec based on the 
least-squares method and multiple-context arithmetic coding, and compare their performance for the test sequences.

3.1 Available codecs

The DEFLATE compression algorithm consists of a combination of the LZ77 algorithm and Huffman coding. 
Taking one-dimensional data as input, duplicate series of data are searched and substituted through back-referencing 
(LZ77), and entropy encoding is performed using Huffman tables. Two common file formats that take advantage of 
the DEFLATE algorithm are GZIP and ZIP (Sayood, 2006).

JPEG 2000 is an image coding standard developed from the commonly-used JPEG standard, offering superior 
compression ratios for the same distortion values. The JPEG2000 standard offers both lossless and lossy compression. 
In both cases, wavelet decomposition is applied for the input image, but with different wavelet transforms in each 
case - biorthogonal CDF 5/3 and CDF 9/7, respectively. Quantization is applied for lossy compression, and then 
the wavelet coefficients are entropy-encoded using the EBCOT (Embedded Block Coding with Optimal Truncation) 
scheme (Skodras, Christopoulos and Ebrahim, 2001).

The H.264/MPEG-4 AVC standard is one of the most popular image and video compression formats, based on 
variable-size block subdivision of frames, intra- and inter-frame prediction, discrete cosine transforms, coefficient 
quantization, followed by adapted Huffman or arithmetic coding. Huffman and arithmetic coding are lossless data 
compression algorithms that assign variable-length codes to symbols based on their frequency of occurrence (i.e. 
histograms), but the latter offers better compression ratios by representing symbols using fractional values within 

Figure 4: Location map showing two study areas in the Bay of Brest: Aulne and Rascass, that were surveyed with a 
Kongsberg EM2040 MBES at 200, 300, and 400 kHz, registering water column data.
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a range. Even though lossless coding is not supported by H.264/AVC at competitive levels, quantization can be 
employed to near-lossless levels (Sayood, 2006; RFC, 1996).

The High Efficiency Video Coding (HEVC) standard is a development of H.264/AVC, offering from 25% to 50% 
data compression at the same level of video quality. HEVC has a similar structure, but includes many more block 
sizes and partitions, intra prediction modes and transform sizes, among others. Like H.264/AVC, HEVC supports 
near-lossless coding, but not lossless (Sullivan et al., 2012).

Context Adaptive Lossless Image Compression (CALIC) is a lossless image compression scheme based on 
context evaluation and prediction of the pixel values. Each pixel is predicted from their surroundings, according to 
neighborhood differences, and the prediction errors are entropy encoded with arithmetic coding (Sayood, 2006).

The Fully Adaptive Prediction Error Coder (FAPEC) is a staged lossless data compressor, composed of a 
prediction stage, which is adapted to the type of data being compressed, and a entropy coding stage, based on 
patented technology, that selects binary codes according to a statistical analysis. It has been used to compress 
multi- and hyperspectral imagery, point cloud data, genomics data and water column data, among others (Portell, 
Villafranca and García-Berro, 2010).

Even though the area of image and video compression has been very active and successful over the last 
decades, all of these codecs were not made specifically for the compression of water column data, so that further 
processing can be exploited to improve compression performance.

3.2 Proposed method

Given the characteristics presented in Subsection 2.2, we propose a water-column-data lossless compression 
scheme based on multiple-context entropy coding, where the contexts are created from two image predictions in 
distinct areas. To do that, we applied the following stages. Non-distorted image formation: water column data is 
read from available datagrams, separated by ping number, arranged as an image in polar coordinates, and all pixels 
are value-shifted to work on a non-negative range. Data filling: non-valid positions are filled with the medium 
possible value (i.e. half of the full range of values). Image separation via bottom detection: the position or oblique 
distance of maximum backscatter strength for each beam angle is found, and the image is divided in two according 
to the earliest or nearest of these positions across all beam angles. Image prediction: for each of these images, an 
N x M neighbourhood is found for each pixel (Fig. 5) and used to predict that pixel using NM-1 weights, followed by 
rounding and clipping for all predicted values.
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Multiple-context entropy-encoding: all pixels that originally correspond to valid values are separated 
according to their D possible prediction values (i.e., unique values generated by the prediction stage), and D individual 
arithmetic coders, with respective frequency tables, are applied to the input images according to prediction values. 
Frequency-table preparation: the frequency tables are put together in a D x D matrix, and a 3D x’y’z’ point cloud of 
non-null values is calculated (where x’ and y’ are the coordinates of the non-null values, and z’ is the corresponding 
non-null value). Frequency-table encoding: the octree that corresponds to the 3D point cloud is calculated and 
arithmetically coded.

A few aspects need to be taken into account in the proposed method. Polar coordinates are chosen to provide 
true lossless performance. The medium possible value is chosen for data filling because it is typically close to values 
at the end of the beam, which are usually close to the seabed bottom’s sample. The image is divided in two because 
the prediction stage works better with different weights for the region corresponding to true water-column data, 
as opposed to the region contaminated by seabed side-lobe echoes. The NM – 1 weights are calculated through 
least-squares prediction, by creating a L x 1 vector a with the pixels to be predicted, a matrix B of size L x (NM – 1) 
with the neighbourhood prediction, and by calculating the NM – 1 weights w = (BTB)-1BTa. Only pixels that originally 
correspond to valid values are used in the calculation, avoiding numerical instabilities. The high amount of contexts 
account for better entropy-encoding data rates, which are also affected by the quality of the prediction (the closer, 
the better), but also require large frequency tables to be encoded. A good prediction also accounts for a sparse 3D 
point cloud of non-null values in the D x D matrix of frequency tables. The octree has been shown to effectively 
encode sparse 3D point clouds (Queiroz and Chou, 2016).

Figure 6 presents the results from some of these stages for the water column data presented in Fig. 2. The first 
three stages (non-distorted image formation, data filling and image separation via bottom detection) are shown in 
the first column, and the image predictions and prediction errors (just for reference) are shown in the second and 
third columns.

Figure 5:  neighborhood of a pixel from water column data.
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Figure 7: D x D matrix of the frequency table for the prediction values. To enhance visibility, the matrix was color-
coded by the base-10 logarithm of frequency values.

Figure 6: Results for different stages of the proposed lossless method. The first column presents the original 
separated image (non-distorted image formation, data filling and image separation via bottom detection), the 
second column presents the two separate image predictions and the third column presents the corresponding 

prediction errors.

Figure 7 presents the D x D matrix of the frequency table for the prediction values in Fig. 6. It can be seen that 
the aforementioned matrix is very sparse, so that octree encoding results in a very efficient representation, rate-wise.

3.3 Experimental results

Extensive tests were performed employing all methods detailed in Subsection 3.1 and the method proposed 
in Subsection 3.2. Mean compression ratio (original size divided by compressed size) of the valid water column 
samples, over all available pings, was used as the basis for comparison.

The following software versions were used to encode water-column data. GZIP and ZIP: the gzip() and zip() 
utilities available in the Octave software, version 4.2.2. JPEG 2000: the opj_compress utility from the JPEG 2000 
reference software by the OpenJPEG project, compiled against openjp2 library v2.3.0. H.264/AVC: the lencod.exe 

Pi
xe

l p
re

di
cti

on

Pixel value

Lo
g 1

0(f
re

qu
en

cy
 o

f o
cc

ur
an

ce
)

9 Diogo Caetano Garcia et al.

Boletim de Ciências Geodésicas, 29(4): e2023010, 2023



utility from the H.264/AVC reference software JM, version 10.2. HEVC: the TAppEncoderStatic utility from the HEVC 
reference software HM, version 16.20. CALIC: the encoder utility from an online CALIC implementation. FAPEC: the 
evaluation version of the fapec utility.

For the proposed method, 4 x 4 neighbourhoods were employed for least-squares prediction in both separated 
images via bottom detection. The rate was calculated for all the data needed for decoding, which includes the 
octree-encoded frequency tables and the 13 x 2 = 26° floating-point weights used in least-squares prediction.

For the GZIP evaluation, only the valid samples were encoded, in the two possible orders: angle-wise and 
radially-wise. In that manner, correlation between beams and between beam samples can be exploited by the 
DEFLATE algorithm, respectively. These two tests were named GZIP1 and GZIP2. The same procedure was done for 
the ZIP evaluation.

Furthermore, the FAPEC evaluation version encodes the full datagram, so that the compression ratio was 
calculated over the whole datagram, and not just the water column samples.

Table 1 shows the results for all sequences and lossless codecs, where the best results are indicated in bold 
font, and Table II presents the average compression ratio gains of the proposed method over lossless and near-
lossless codecs. It can be seen that the proposed method outperforms all the other methods for most cases, and 
when it loses (sequence 0091_20130204_155210_Thalia.all), it does so by a very small margin (less than 1%). 

A few relevant observations can also be made. Given the GZIP and ZIP encoders, it is better to encode 
valid samples angle-wise than radially-wise. Even though HEVC and H.264/AVC are not truly lossless, they are 
outperformed by GZIP and ZIP. JPEG 2000 outperforms GZIP and ZIP by a small margin. CALIC and FAPEC offer much 
better performance than the other methods, except for the one proposed in this paper.

Table 1: Compression ratio for lossless and near-lossless codecs.

Data-set GZIP1 GZIP2 ZIP1 ZIP2 HEVC H.264/AVC JPEG 2000 CALIC FAPEC Prop.
1 1.83 1.21 1.82 1.21 1.71 1.30 1.94 2.15 2.10 2.20
2 1.78 1.43 1.77 1.42 1.68 1.22 1.82 1.99 1.92 2.08
3 1.75 1.34 1.74 1.33 1.65 1.21 1.76 1.96 2.01 2.07
4 1.89 1.43 1.87 1.42 1.78 1.32 1.88 2.11 2.17 2.27
5 1.72 1.35 1.68 1.34 1.68 1.25 1.78 2.01 2.07 2.06

Table 2: Average compression ratio gains of the proposed method over lossless and near-lossless codecs.

GZIP1 GZIP2 ZIP1 ZIP2 HEVC H.264/AVC JPEG 2000 CALIC FAPEC
19% 59% 20% 60% 26% 70% 16% 5% 4%

4. Lossy compression

Lossless compression of the image data can only provide moderate compression rates. In order to increase the 
compression rate, information losses are unavoidable and typical image compressors can be readily applied. Traditional 
coders remove information and increase compression by quantizing the coefficients of a spatial transform. Such a method 
has been proven efficient for image and video compression and is adopted in most image and video compression standards 
such as JPEG 2000 and HEVC. However, most compression standards have visual quality for broadcast applications in 
mind. In our case, the images are very specific and unusual and general image aspect is not the main concern.
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We propose to escape from the traditional compression framework and to selectively remove information we 
deem of little relevance to ourselves, rather than seconding that to the encoder algorithm. The pre-processed image 
is then subject to lossless compression. The pre-processing step may comprise distortions caused by thresholding, 
filtering and quantization of the echosounder data. With thresholding, we aim to remove small intensity values with 
little relevance to the water- column data analysis. With less data to encode compression rates should increase. 
Low-pass spatial filtering may also remove some noise and improve compression, while sample quantization may 
decrease the information entropy and may also increase the compression. Many tests were carried out, varying 
threshold values, quantizer step size, and low-pass filter cut-off frequency. The conclusion was that all the three 
parameters exchange quality for compression ratio. However, the rate by which we decrease quality as we increase 
the compression ratio is much larger when we change the threshold than when we change the filter or the quantizer 
step. In other words, it is much more efficient to change the thresholding value than using filtering and quantization. 
An example is shown in Fig. 8 where all rate-distortion (RD) points are plot after compressing a water column data 
image using various combinations of change of threshold, quantizer step and filter cutoff. In Fig. 8 we also mark the 
curve obtained by only varying the thresholds without filtering or quantization (quantizer step set to 1). Such a curve 
is also the lower hull or lower envelope of all points, which indicates no other combinations yield lower distortion 
and rate, hence should be the preferred way of pre-processing. As a result, our compression scheme is based on 
thresholding the input data and encoding the remaining samples using the CALIC encoder. The higher the threshold, 
the higher the compression, supposedly.

Figure 8: Rate-distortion compression points using various combinations of change of threshold, quantizer 
step and filter cutoff. The marked curve indicates points obtained by only varying the thresholds without 

filtering or quantization.

We carried tests using mean-squared error (MSE) as a distortion measure. However, since the input samples 
are a measure of the response attenuation in dB (logarithmic domain), it is important to linearize the data before 
computing the MSE, even if you present the MSE data in dB again. If s[n] is the input dB-valued signal and s’[n] is its 
reconstruction after decompression, the MSE is computed as:

𝐸𝐸𝐸𝐸 = 𝑆𝑆𝐸𝐸 − 2𝑇𝑇𝐸𝐸 + 𝑇𝑇𝑆𝑆

𝑥𝑥 = 𝑟𝑟 cos(𝜃𝜃) ,  𝑦𝑦 = 𝑟𝑟 sin(𝜃𝜃)

𝑀𝑀𝑆𝑆𝐸𝐸 = 1
𝑁𝑁𝑁𝑁 ∑ (10𝑠𝑠[𝑛𝑛]÷10 − 10𝑠𝑠′[𝑛𝑛]÷10)2

𝑁𝑁𝑠𝑠−1

𝑖𝑖=0

𝑀𝑀𝑆𝑆𝐸𝐸𝑑𝑑𝑑𝑑 = 10 log10(𝑀𝑀𝑆𝑆𝐸𝐸)

                                                           (3)

Semi-log RD plot using HEVC
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and for visualization a log-domain dB measure of MSE can be given as

𝐸𝐸𝐸𝐸 = 𝑆𝑆𝐸𝐸 − 2𝑇𝑇𝐸𝐸 + 𝑇𝑇𝑆𝑆

𝑥𝑥 = 𝑟𝑟 cos(𝜃𝜃) ,  𝑦𝑦 = 𝑟𝑟 sin(𝜃𝜃)

𝑀𝑀𝑆𝑆𝐸𝐸 = 1
𝑁𝑁𝑁𝑁 ∑ (10𝑠𝑠[𝑛𝑛]÷10 − 10𝑠𝑠′[𝑛𝑛]÷10)2

𝑁𝑁𝑠𝑠−1

𝑖𝑖=0

𝑀𝑀𝑆𝑆𝐸𝐸𝑑𝑑𝑑𝑑 = 10 log10(𝑀𝑀𝑆𝑆𝐸𝐸)                                                                          (4)

RD plots comparing the proposed method against HEVC and JPEG 2000 are presented in Figs. 9 and 10 for 
the 5 test datasets considered here. In all of them it is notable the large difference in favor of the proposed method.

Figure 9: Rate-distortion results for sequences the datasets 1, 2 and 3 using the proposed, HEVC and JPEG-2000 coders.

Figure 10: Rate-distortion results for sequences the datasets 4 and 5 using the proposed, HEVC and JPEG-2000 coders.

MSE is not the definitive distortion measure, and, because of that, we considered 3 other metrics, derived 
from analysis parameters. Consider the following parameters P1, P2 and P3, proposed by Beaudoin (2010), which 
relate to the first strong return. P1 is the position of the first sample exceeding -30 dB. P2 is the position of the peak 
sample in window of 50 samples following P1. P3 is the weighted average of the response times within a 50-sample 
window centered at P2.

We then calculated the parameters P1, P2 and P3 for each row (beam) of each image (ping) and compared 
against the parameters derived from the same image, but decompressed. The parameter errors were computed, 
and their absolute error value was averaged for each image.is then the average absolute error in computing Pk for 
a given image, due to compression. Table III shows the results for E1, E2, E3 computed over the 5 datasets we are 
using, comparing the proposed coder against HEVC and JPEG 2000. In the table, rate is given in bits/sample and E1, 
E2, E3 are given in percentage points.
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Table 3: RD performance for the three methods and 5 datasets, using the estimation error percentage (E3 through 
E3, given in %) of the parameters P1 through P3 for different bit-rates (R, given in bits per sample).

Dataset
Proposed HEVC JPEG 2000

R E1 E2 E3 R E1 E2 E3 R E1 E2 E3

1

3.80 0.00 0.00 0.00 4.71 0.05 0.06 0.39 2.04 0.00 0.02 0.03
3.70 0.00 0.00 0.00 2.70 0.45 0.56 1.07 1.61 0.00 0.04 0.05
3.04 0.00 0.00 0.03 1.32 0.90 1.06 1.59 1.07 0.01 0.09 0.11
1.80 0.00 0.00 0.16 0.47 1.49 1.80 2.20 0.80 0.01 0.14 0.18
1.01 0.00 0.00 0.53 0.10 2.08 2.66 3.08

2

3.88 0.00 0.00 0.00 4.90 0.00 0.01 0.02 4.20 0.00 0.03 0.04
2.88 0.00 0.00 0.03 3.15 0.01 0.10 0.13 3.24 0.01 0.09 0.11
1.75 0.00 0.00 0.14 1.55 0.04 0.29 0.37 2.16 0.04 0.19 0.24
1.72 0.00 0.00 0.15 0.38 0.12 0.62 0.78 1.62 0.05 0.27 0.34
1.66 0.00 0.00 0.14

3

3.92 0.00 0.00 0.00 4.93 0.00 0.05 0.07 4.24 0.00 0.10 0.13
2.75 0.00 0.00 0.11 3.08 0.01 0.33 0.42 3.29 0.01 0.26 0.33
1.70 0.00 0.00 0.34 1.53 0.05 0.93 1.14 2.19 0.03 0.50 0.63
1.70 0.00 0.00 0.36 0.47 0.11 1.66 2.05 1.63 0.05 0.83 1.03
1.86 0.00 0.00 0.51

4

3.54 0.00 0.00 0.00 4.56 0.00 0.04 0.06 3.93 0.00 0.10 0.14
2.17 0.00 0.00 0.14 2.82 0.02 0.31 0.40 3.24 0.01 0.18 0.24
1.71 0.00 0.00 0.27 1.40 0.05 0.84 1.09 2.15 0.02 0.55 0.69
1.67 0.00 0.00 0.31 0.43 0.13 1.85 2.37 1.61 0.04 0.79 1.00
1.86 0.00 0.00 0.51

5

3.81 0.00 0.00 0.01 4.30 0.09 0.13 0.13 4.25 0.38 0.50 0.53
2.74 0.00 0.00 0.22 2.52 1.12 1.34 1.40 3.21 1.27 1.47 1.50
2.10 0.00 0.00 0.44 1.19 3.16 3.77 3.88 2.13 1.98 2.40 2.49
1.86 0.00 0.00 0.51 0.30 7.17 8.27 8.44 1.59 3.01 3.56 3.66
1.92 0.00 0.00 0.67

The results are strongly favorable to the proposed method against both HEVC and JPEG-2000. It is also worth 
noting that the proposed method is much less complex than either one of them. The reason for such quality comes, 
among other things, from the fact that the log-domain nature of the samples makes dB variations around 0 dB be 
much more important than for example around -100 dB. While HEVC and JPEG-2000 treat 0 dB and -100 dB samples 
the same way, the thresholding only eliminates very small samples. Its disadvantage is that the compression ratios 
are not too large, since thresholding can only take us so far before losing important data.

5. Conclusion

In this paper, we proposed two compression methods for water column data from multibeam echosounders, 
by mapping the water column data into images and compressing them using image compressors. We devised two 
methods, one for lossless compression based on linear predictors, and another for lossy compression based on 
thresholding followed by lossless coding. Both methods seem to better suit the echosounder image data than 
traditional image coders. Results for sequences that capture different water column activity indicate that our 
method outperforms other standard image compression methods, where distortion was measured as traditional 
mean squared error and also as analysis-parameter estimation errors. With proper compression, water column data 
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could be routinely acquired in all survey operations, even if not previously specified. Furthermore, the relationship 
between pings could be also exploited by video codecs such as H.264/AVC and HEVC.
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