Comments of the Mismatched/Missing References in Published Article

Ekim Onur Orhan¹, Özgür Irmak²

¹Department of Endodontics, Faculty of Dentistry, Eskisehir Osmangazi University, Eskisehir, Turkey
²Department of Restorative Dentistry, Faculty of Dentistry, Eskisehir Osmangazi University Eskisehir, Turkey

Correspondence: Özgür Irmak, Eskisehir Osmangazi University, Eskisehir, 26480, Turkey. Tel: XXXXXXXXX
email: zgrrmk@gmail.com

Brazilian Dental Journal (2018) 29(2): 222-222
http://dx.doi.org/10.1590/0103-6440201801751

Letter to Editor

Dear Editor,

First of all, we would like to congratulate the authors of the review article by Gomes et al (1) entitled “Chlorhexidine in Endodontics”, which was published in Brazilian Dental Journal in 2013. Secondly, we would like to comment on an specific aspect of this review. We have noticed mismatched/missing references in the article. Due to the impact of this review in the literature, and also due to the importance of the mismatched/missing references, it is interesting to mention it to authors and readership.

In our understanding, reference #4, which was mentioned in pages 93 and 94, should actually be two different references, as follows:


"Prado et al (4a) investigated the byproducts formed in the associations between the most commonly used irrigants in the endodontic practice, through electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOF-MS) analyses. Regarding the CHX associations, 2% CHX gel and solution immediately produced an orange-brown precipitate when associated with 1%, 2.5% and 5.25% NaOCl solutions, and an orange-white precipitate, when associated with 0.16% NaOCl. When associated with EDTA, CHX produced a white-milky precipitate, related to the acid-base reactions. When associated with saline and ethanol, a salt precipitation was produced. No precipitate was observed when CHX was associated with distilled water, citric acid or phosphoric acid.

Regarding the orange-brown precipitate, it occurs due the presence of NaOCl, an oxidizing agent causing chlorination of the guanidino nitrogens of the CHX (4a). Basrani et al. (82) detected the presence of para-chloroaniline (PCA) in this precipitate. On the other hand, Thomas & Sem (83), Nowicki & Sem (84) and Prado et al. (4a) failed to detect it using different methodologies. PCA has been found to be mutagenic in microorganisms (14,85) and cytotoxic (80). Some concern over possible carcinogenicity also has been expressed (82)."

However, in page 94 reference #4 (named 4b below) should be: Prado M, Simão RA, Gomes BP. Effect of different irrigation protocols on resin sealer bond strength to dentin. J Endod 2013;39:689-692.

"De Assis et al. (107) observed that a final flush with CHX favor the wettability of AH Plus and Real Seal SE sealers on dentine surface. Additionally, Hashem et al. (108) verified that the bond strength of ActiV GP was improved by using 2% CHX in the final irrigation after 17% EDTA. Prado et al. (4b) found that the irrigation protocols influenced the bond strength of the resin sealers to dentine. In the gutta-percha/ AH Plus groups, the bond strength was higher when NaOCl was associated with phosphoric acid or the CHX with EDTA; In Resilon/ Real Seal SE groups, the protocol associating CHX with phosphoric acid showed better results. The use of CHX as final irrigant did not negatively affect the bond strength."

We hope that you would find our comments relevant enough to find their place in your journal.

References


Received November 31, 2017
Accepted January 12, 2018