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Abstract - Production optimization of gas-lifted oil fields under facility, routing, and pressure constraints has 
attracted the attention of researchers and practitioners for its scientific challenges and economic impact. The 
available methods fall into one of two categories: nonlinear or piecewise-linear approaches. The nonlinear 
methods optimize simulation models directly or use surrogates obtained by curve fitting. The piecewise-linear 
methods represent the nonlinear functions using a convex combination of sample points, thereby generating a 
Mixed-Integer Linear Programming (MILP) problem. The nonlinear methods rely on compact models, but 
can get stuck in local minima, whereas the piecewise-linear methods can reach globally optimal solutions, but 
their models tend to get very large. This work combines these methods, whereby piecewise-linear models are 
used to approximate production functions, which are then composed with convex-quadratic models that 
approximate pressure drops. The end result is a Mixed-Integer Convex Programming (MICP) problem which 
is more compact than the MILP model and for which globally optimal solutions can be reached. 
Keywords: MINLP; MILP; Mixed-Integer Convex Programming; Oil Production Optimization. 

 
 
 

INTRODUCTION 
 

With the increasing demand for fossil energy, the 
oil industry has looked for new technologies in 
hardware and software to enable production optimi-
zation of oil fields. These are evolving technologies 
often referred to as smart fields (Williams and Webb, 
2007; Moisés et al., 2008). However, before this con-
cept is transferred to the oil fields, significant chal-
lenges in science and technology should be over-
come. To this end, this paper addresses the problem 
of optimizing production of oil fields operated with 
artificial lifting and subject to facility, routing, and 
pressure constraints. 

Large oil fields have several production wells 
spread over a wide area. The production of clusters of 

wells is concentrated in a manifold and then trans-
ferred by a flow line to a separator, where the multi-
phase flow is split into gas, oil, and water. In such 
fields, the reservoir internal pressure may not be 
sufficiently high to raise oil naturally to the surface, 
requiring the use of artificial lifting techniques. A 
common method is gas-lift, which consists in inject-
ing high-pressure gas at the bottom of the well-bore 
to reduce the counter pressure and thereby induce a 
multiphase flow to the surface. In such systems, oil 
production is a function of the lift-gas injected and 
the pressure at the well head, which is also related to 
the separator nominal pressure through pressure drops 
in the production lines. Here arises the challenge of 
modeling the production function of wells and pres-
sure drop in pipelines, which can be rather complex. 
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The production optimization problem consists of 
a Mixed-Integer Nonlinear Programming (MINLP) 
problem for which the direct application of standard 
algorithms may not be possible or effective. This 
problem is only known conceptually because the 
well-production functions and pressure-drop rela-
tions are not explicitly available. The proposed solu-
tion approach uses two-dimensional piecewise-linear 
models for the well-production functions that depend 
on the lift-gas rate and manifold pressure, while 
continuous convex functions are used to approximate 
the three-dimensional pressure-drop functions. The 
continuous convex approximation has the advantage 
of being quite compact when compared to three-di-
mensional piecewise-linear models. In the end, the 
production optimization problem is approximated as 
a Mixed-Integer Convex Programming (MICP) prob-
lem which can be tackled with off-the-shelf solvers. 
Computational experiments are performed to 
compare the MICP formulation and a Mixed-Integer 
Linear Programming (MILP) formulation obtained 
by piecewise-linearizing the pressure drops, which is 
more precise but demands a large number of sample 
points. The MICP formulation is further compared 
with an MINLP formulation obtained from MICP by 
imposing a precise pressure-balance in the flow 
lines. The computational experiments assess the 
trade-off between solution speed and the degree of 
approximation across formulations. A simulation 
analysis is carried out to compare the mean errors 
of the field variables predicted with the formula-
tions, against the variables obtained with a multi-
phase-flow simulator. Because the true MINLP prob-
lem is only known conceptually, this analysis serves 
the purpose of comparing the effectiveness of the ap-
proximations and identifying how complex the under-
lying models need to be to represent the production 
process satisfactorily. 

In what follows, the production optimization 
problem is first formalized in mathematical notation. 
Background is presented on multidimensional piece-
wise-linear (PWL) and quadratic programming (QP) 
models, which are then used in the problem formula-
tion. Computational and simulation results are 
reported and discussed. Finally, the paper ends by 
offering some concluding remarks and suggesting 
directions for future research. 
 
 

PROBLEM DEFINITION 
 

In several offshore fields, oil production relies on 
artificial-lifting methods to compensate for low res-
ervoir pressure and high depth reservoirs, notably the 

ones located off the coast under the sea bed. Among 
the artificial-lifting methods, gas-lift is a widely ap-
plied technique for its desirable features that include 
relatively low installation and maintenance costs, 
robustness for using few mechanical components, 
and efficiency. It works by injecting high pressure 
gas at the bottom of the production tubing to induce 
a pressure gradient from the reservoir all the way up 
to the surface facilities. 

When the operating conditions on the surface are 
kept constant or change slowly, the modeling of well 
production can be carried out using Well Performance 
Curves (WPCs), which relate the production of oil, 
gas, and water to the lift-gas injection rate. Several 
works in the technical literature (Buitrago et al., 1996; 
Alarcón et al., 2002; Camponogara and Nakashima, 
2006; Camponogara and de Conto, 2009; Misener et 
al., 2009; Codas and Camponogara, 2012) have ad-
dressed the problem of optimizing production for 
pre-determined surface conditions. 

However, when surface conditions change fre-
quently due to routing operations, failure of equip-
ment, and shutting operations of wells, the standard 
WPC modeling needs to be extended to consider the 
pressure at the manifolds which concentrate produc-
tion from the wells (Kosmidis et al., 2004). Some 
works from the literature take into account pressure 
balance constraints (Litvak et al., 1997; Kosmidis   
et al., 2004; Bieker, 2007; Gunnerud and Foss, 2010; 
Silva et al., 2012; Codas et al., 2012; Silva and 
Camponogara, 2014), with some approaches using 
nonlinear functions and others relying on piecewise-
linear models to approximate pressure drops through 
pipelines. 

Unlike the preceding works, we suggest the repre-
sentation of the pressure drops using convex quadratic 
functions that are adjusted to measured or simulated 
data, while approximating well production functions 
with multidimensional piecewise-linear models. This 
hybrid approach has the advantage of ensuring con-
vexity of the continuous relaxation of the pressure-
drop approximation when combined with flow equa-
tions given in piecewise-linear form. (The composi-
tion of a convex function with an affine function      
is convex). Thus, any enumeration scheme such as 
branch-and-bound applied to the resulting approxi-
mation formulation will solve convex relaxations and 
therefore the global optimum can be reached. On the 
other hand, the composition of a convex pressure-
drop function with a general and even concave pro-
duction function will not necessarily be a convex 
function, thereby making global optimization com-
putationally hard (Boyd and Vandenberghe, 2004). 
Notice that the well production function is typically 
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concave for a varying lift-gas injection rate, provided 
that the well-head pressure is kept at the nominal 
value and the well does not have a kick-off rate. 

The definition of the Production Optimization 
Problem (POP) is based on the following parameters: 
  { 1,  ,  }N= ¼  is the set of oil wells, N  being 

their number, and m Í   is the subset of wells that 

have a flow line connected to manifold m ; 
 {1, , }= ¼   M  is the set of manifolds, M  being 

the number of manifolds, and Í n  is the subset 

of manifolds that can receive production from well 
n , which is then transferred to a single separator; 
 {o,g,w}=  has the multiphase flows: oil (o) , 

gas (g)  and water (w) ; 

 
maxi  q  is the lift-gas limit supplied by the com-

pressors; 

 
,mininq  and ,maxinq are operational limits for lift-

gas injection into well n ; 

 
,Smp  is the nominal pressure of the separator that 

receives production from manifold m ; 

 
,Lqn  and ,Uqn are the lower and upper bound on 

the flow rate of well n ; 
variables: 

 i  nq  is the lift-gas rate allocated to well n ; 

 ny  is 1 when well n  is producing, and 0 other-

wise; 
 ,n mz  takes value 1 if the production from well n  

is directed to manifold m , and 0 otherwise; 

 
,n m

hq  is the flow of phase Îh  sent from well 

n  to manifold m  and n m
hq h, ( : )= Îq   is a vector 

with all phase flows. The gas flow rate received by 
the production manifold is the sum of the lift-gas 
injected into well n  (Inj) and the gas from the 

reservoir (R): , , ,g g ,R g ,Inj= +n m n m n mq q q ; 

 
,

Î
=åq q

m

m n m

n
  is the total flow received 

from the wells connected to manifold m  for all 
phases; 
 

mp  is the pressure of manifold m ; 

and functions: 
  g  is the profit function of the oil and gas 

production that accumulates in a manifold; 
 c  is the cost function for lift-gas injection into 

a well; 

 
, i( , )qn m m np q  is the production function of well n  

if connected to manifold m  as a function of the mani-

fold pressure mp  and the lift-gas injection rate inq ; 

 Δ ( )qm mp  is the pressure drop in the flow line 

connecting manifold m  to its dedicated separator as 

a function of the multiphase flow qm . 
Then the production optimization problem con-

sidering a group of gas-lifted wells, routing decisions 
about well-manifold connections, and lift-gas, sepa-
rator flow handling, and pressure constraints can be 
conceptually formalized as an MINLP problem: 
 

POP: m n

m n

f  g  c qi( )max ( )
Î Î

= -å åq
 

     (1a) 

 

st.:  maxi i
Î

£å


n

n

q q           (1b) 

 ,min ,maxi i i ,£ £ " În n n
n nq y q q  y   n      (1c) 

 , ,
Î

= " Îå




n

n m n

m

z y   n          (1d) 

 
n m n m m n

n m np  q  z   ( n  m, , i ,, , ,)= " Î " Îq q           (1e) 

 ,L , ,U ,
Î

£ £ " Îåq q q




n

n n m n
n n

m

y  y   n            (1f) 

 , ,
Î

= " Îåq q




m

m n m

n

  m              (1g) 

 ,min ,max ,£ £ " Îq q q m m m    m       (1h) 
 

m m m mp p p   m,S ( ,)Δ= + " Îq         (1i) 
 

ny   n{0,1} ,Î " Î            (1j) 

 

n m nz   n m, {0,1} , ,Î " Î " Î          (1k) 

 
The problem aims to maximize the objective f  

which is composed of a gain function g  (financial 

gains from oil and gas flows represented by qm  dis-
counted the cost of water treatment before discharge) 
and the cost c  incurred by compression and injec-
tion of lift-gas in each well. 
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The restriction given by Eq. (1b) says that there is 
a limited amount of lift-gas. Eq. (1c) says that the 
gas injection in an individual well is limited by an 
upper and lower bound if the well is producing when 1=ny , otherwise this injection is zero when 0=ny . Eq. (1d) ensures that each well must be con-

nected to a single manifold when the well is produc-

ing. Eq. (1e) defines the multiphase flow ,qn m  from 

well n  to manifold m  as a function of the manifold 

pressure mp  and the lift-gas injection inq . Eq. (1f) 

restricts the multiphase flow of a well n  to be within 
lower and upper bounds when the well is operating 
( 1=ny ). Eq. (1g) ascertains that the inflow into a 

manifold m  is precisely the sum of the multiphase 
flows from the connected wells. Eq. (1h) establishes 
processing capacity for the separators. Eq. (1i) 
ensures the pressure balance in the flow lines, 
namely that the difference between the manifold 
pressure and its separator is precisely the pressure 
drop through the flow line. 

The MINLP problem given in Eq. (1) is a concep-
tual definition of the production optimization problem, 

since the well-production function , i( , )qn m m np  q  and 

the pressure drop Δ ( )qm mp  are not known explicitly.  
Correlations can be found in the literature and are 
often available in simulation software for approxi-
mating pressure relations in oil production systems 
(Beggs and Brill, 1973; Litvak and Darlow, 1995). 
Although one could conceivably model ,qn m  and Δ mp  
with these correlations, the resulting MINLP formu-
lation would be highly nonlinear and complex, ren-
dering a global optimization problem, which is a chal-
lenge for existing algorithms and software. This 
work is half-way between the approaches that use 
piecewise-linear models and those that rely on non-
linear correlations. Instead, the well-production func-
tions will be approximated with piecewise-linear func-
tions and the pressure drops with convex functions. 
 
 

PIECEWISE-LINEAR AND QUADRATIC 
CONVEX APPROXIMATIONS 

 
Two favorite strategies for solving the production 

optimization problem are nonlinear programming 
methods and MILP strategies which rely on models 
obtained by piecewise linearizing the nonlinear 
functions. While the former method is prone to get 
stuck in local minima, the latter method can lead to 
very large MILP problems. 

This work suggests a hybrid approach that ap-
proximates the pressure drop functions with convex 
functions and the well-production functions with 
piecewise-linear models. Such an approach renders 
the approximation problem an MICP program which 
is far more compact than the MILP approximation 
and which can be solved efficiently up to optimality. 
 
Convex Combination Model 
 

Among the MILP models for piecewise lineariza-
tion available in the literature (Vielma et al., 2010), 
this work uses the Aggregated Convex Combination 
(CC) model to approximate the well-production func-
tion , .qn m

 Let f :   be a continuous function 

defined over a compact domain Í d . According 
to Vielma et al. (2010), f  is piecewise-linear if and 

only if there exists a family of polytopes  , such that 

Î =  P P , { } Î Ìm 
d

P P , P P{c } Î  and further: 

 

Pf c P P( ) , ,T P= + Î " Îx m x x        (2a) 

 
Let ( )V P  be the set of vertices of polytope P  and 

P V P( ) ( )Î=    be the set of all vertices. The CC 

model assigns weighting variables to each vertex ( )Îv   . Thus a graph point is represented by 

 f λ f( )( , ( )) ( , ( ))
Î

= å vvx x v v
 

 where λ ( ){ } Î +Ìv v     

and λ( ) 1
Î

=å vv   . The CC model is given by: 

 

( ) ,
Î

=å vv v x
 

λ           λ f f( ) ( ) ( )
Î

=å vv v x
 

   (3a) 

 0, ( ),³ " Îv v  λ     ( ) 1
Î

=å vv   λ      (3b) 

 

( )
, ( ),

Î

£ " Îåv v v


 P

P

λ y   1
Î

=å


P

P

y     (3c) 

 

Py  P{0,1},Î " Î           (3d) 

 
where P P( ): { : V( )}= Î Îv v    is the set of poly-

topes that contain vertex v . 
The constraints (3a) represent a graph point 
f( , ( ))x x  as the convex combination of the vertices 

and their associated function values. Equations (3b) 
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ensure that the λ  weights define a convex combina-
tion of the vertices and function values. Equations 
(3c) limit convex combinations to a single polytope, 
and further guarantee that only the weighting vari-
ables associated with vertices of the active polytope 
can be non-zero. 
 
Convex Quadratic Model 
 

A convex quadratic approximation of a nonlinear 
function :  nf  consists of 
 

f Q c
1( ) 2 T T» + +x x x b x         (4a) 

 
where Q  is a positive definite matrix denoted by 0Q , b  is a vector, and c  is a constant. Such 
quadratic functions will be used later to approximate 
pressure-drop relations, since their behavior is 
dominated by the effects of friction, which depends 
on the square of the flow speed. 
 
 

PROBLEM APPROXIMATION 
 

This section begins by presenting the piecewise-
linear modeling of well production, followed by the 
convex quadratic approximation of pressure drop and 
the synthesis of such models. These models are then 
combined to obtain the MICP formulation for oil 
production optimization. 
 
Piecewise-Linear Approximation of Well Production 
Functions 
 

The multiphase flow function , i( , )qn m m np  q  

depends on the pressure of the manifold m  to which 

this well is connected, mp , and the lift-gas injection 

rate inq . Using the CC model, the piecewise-linear 

approximation of well production is formulated as 
follows: 
 
For alln Î : 
 

i r, ,i r
,i i,

Î Î Î

= å å å
  n m n m

n

n n m
q  p

m q p

q     λ q       (5a) 

 

n m n m

n m m
nq p

q p

λ p p   mi r, ,i  r
, r, ,

Î Î

£ " Îå å
 

     (5b) 

i r, ,i  r
, ,maxr ,, (1 ),

Î Î

£ + -

" Î

å å
n m n m

m n m m
n mq p

q p

n

p λ p   p z   

m

 



  

(5c) 

 

i r, ,i  r
, , , i r, ( ), ,

Î Î

=

" Î

å åq q
n m n m

n m n m n m
q p

q p

n

λ q   p  

m

 



    
(5d) 

 

iqi r, , ,r, 0, , ,³ " Î " Î " În m n m n m
nq  p

λ   m     p     (5e) 

 

i r, ,i  r
, ,, ,

Î Î

= " Îå å
 


n m n m

n m
n m nq p

q p

λ z   m      (5f) 

 

i r , i r
, , ,i, ( , ) ,r

, , ,
Î

£ " Î " Î

" Î

å
n m

n m n m n m
P nq  p

P q p

n m

λ  δ   m  q  

p



 



 
 (5g) 

 

, , , ,
Î

= " Îå



n m

n m
P n m n

P

δ z   m
       (5h) 

 
n m n m
P nδ  m  P, ,{0,1}, ,Î " Î " Î         (5i) 

 
having the following extra parameters: 

 
,n m  and ,n m  are the sets of breakpoints for 

the lift-gas rate and manifold pressure when well n  
is connected to manifold m , respectively; 

 
,n m  is the set of polytopes with vertices in , ,n m n m´  ; 

 
, ,i r i r,  { :( , ) (( ) )}n m n mq p P q p V P= Î Î   has 

the polytopes that contain vertex i r( , )q p ; 

 
,maxmp  is the maximum manifold pressure; 

and extra variables: 

 i r,,n mq pλ is the weighting variable of a breakpoint 

pair in , ,´ n m n m ; 

 
,n mPd  is a binary variable for each polytope ,n mP Î  which assumes value 1 if the convex com-

bination is limited to polytope  P . According to con-
straints (5g)-(5i), only the vertices of  P  can be part 
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of the convex combination defining the gas injection 
into well n  and manifold pressure mp ; 

 
  ,n mq  is the piecewise-linear approximation of ,n mq . 

 
Notice that the injection bound (1c) and the well-

production restriction (1f) are implicitly imposed by 
the piecewise-linear approximation, i.e., the infeasi-
ble points do not belong to the domain of the PWL 
approximation function. 
 
Convex Quadratic Approximation of Pressure Drop 
Functions 
 

The approximation of the pressure drop in the flow-
line from a manifold m  to its separator is approxi-
mated with a convex quadratic function. Thus, for all m Î : 
 ,

m
m n mnÎ= åq q



           (6a) 

 
Δ ( )m m T m mT mm mp Q c= + +q q b q      (6b) 

 
,S Δ mm mp p p= +            (6c) 

 
where    0mQ  . Being an equality, Eq. (6c) induces a 

nonconvex and discontinuous set of candidate solu-
tions, which results in a nonconvex approximation of 
the production optimization problem. However, this 
equality may be approximated by two convex ine-
qualities: 
 
 ,SueΔ m m mp p p£ -           (7a) 

 
 ,SoeΔ m m mp p p³ -            (7b) 

 

with ueΔ mp  being a convex underestimation and oeΔ mp  

being a concave overestimation of the pressure drop Δ .mp  Replacing (6b)-(6c) with (7) would lead to a 
relaxation of the true MINLP. Notice that a problem  : max{ ( ) : ( )}R RR z f x x X R= Î  is a relaxation for 

a problem (: max{ ) : ( )}P PP z f x x X P= Î  if ( ) ( )X R X PÊ  and )( ) (R Pf x f x³  for all ( )x X PÎ . 

Provided that the piecewise-linear models of the 
production functions are precise, the optimal solution 

to the MICP arising from this replacement would 
induce an upper bound on the objective. The ability 
to produce relaxations based on under and overesti-
mation within a reduced domain of the decision space, 
possibly using convex and concave functions as 
given in (7), would allow the application of a spatial 
branch and bound strategy. 

The physical behavior in the oil production 
system is such that, for a given pressure difference ,S( )m mp p-  the flow mq  will be as large as possible 

and, thereby, so will be the pressure drop Δ ( )m mp q . 
This means that constraint (7b) may not be bounding 
and the approximation of (6b)-(6c) can be carried out 
only with (7a). Since the effectiveness of this ap-
proximation should be assessed by simulation of the 
oil field, we will consider a general single-sided 
approximation of the form: 
 
 ,SΔ m m mp p p£ -            (8a) 
 

where 
mpD  is a convex function that meets one of 

the following cases: 

1) Underestimation: if  ( )Δ Δ ( )m m m mp p£q q  for 

all mq , then (6b)-(6c) can be approximated by: 
 

, ,0 0mm S m m m S mp p p p ppD £  D -+- £+   (9a) 
 
meaning that the resulting MICP formulation will be 
a relaxation for the true problem, provided that the 
piecewise-linear functions for well production can be 
regarded as precise models and the objective 
function is not modified. 

2) Overestimation: if  ) (( )m m m mp pD ³Dq q  for 

all mq , then (6b)-(6c) is approximated by: 
 

,
,

00
mm S m

m S m m
p p pp p pD - £ 

-+D £

+
          (10a) 

 

3) Estimation: when Δ ( )m mp q  neither under-
estimates, nor overestimates the true pressure drop, 
an approximation for (6b)-(6c) is given by: 
 

, 0mm S m mp p p+ -D -e £          (11a) 
 0me ³                 (11b) 
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The excess εm  may be necessary to ensure feasi-

bility of the MICP formulation when Δ mp  is an over-

estimation. Notice that the excess εm  can be nullified 

when  ,SΔ m m mp p p£ - , otherwise εm  should be 

driven to zero. One possibility is to introduce in the 
objective a penalty factor on the excess, such as me
-

m
 with 0m> . As m  tends to zero the penalty 

increases, drawing εm  towards the origin unless a 
feasible solution with ε 0m = does not exist. The 
strategy of introducing an excess variable is also viable 
for the case of overestimation. 

To obtain the MICP formulation, the choice 
among the cases above should be based on an 
analysis of the approximation quality and validated 
through simulation. 
 
Curve Fitting for Quadratic Approximation of 
Pressure Drop 
 

Two relevant issues are how convex-quadratic 
approximations for the pressure drop are computed 
and whether or not such approximations are satisfac-
tory. To resolve these issues, we suggest solving a 
Semi-Definite Program (SDP) minimizing the error 
with respect to a set of pressure-drop points obtained 
from field data or multiphase-flow simulators. The 
synthesis of the convex-quadratic approximation for Δ mp  consists in solving the following problem: 

 CF : 

 ,,
, Δ Δ    Δ,  , 
m km k

m kkm m m
p pmin pQ c Î

-

åb 

      (12a) 

 

s.t.: 
 , , , ,Δ ( ) ,  

m k m k T m k m km mTm
p Qc k= +

+ " Î

q q b q


     (12b) 

 0m mTQ Q=                (12c) 

 1,  , m m mQ c´ ´
Î Î Îb             (12d) 

 
where {1,  ,  }K= ¼  is the set of indexes of the 

pressure-drop sample points ,1 ,1 ,( , Δ ),  , ( , m m m Kp ¼q q  ,Δ ).m Kp  Notice that CF  can be easily recast as an 
SDP by linearizing the objective function with the 

introduction of slack variables and linear inequali-
ties, namely by expressing the 1l -norm of the vector 

of approximation errors as a system of linear ine-
qualities. Reformulations of CF  in SDP are briefly 
discussed in the Appendix. 

The choice of convex approximation, the 1l -norm, 

and the relative error in the objective function was 
not arbitrary but rather the result of experimental 
analyses. For instance, the pressure-drop approxima-
tions obtained by minimizing concave functions were 
consistently worse than the minimization of convex 
functions. The experiments also revealed that the 
error should be normalized because pressure drops 
can vary drastically from low to very high values.  

The analyses leading to these findings will be 
presented later in the paper. 
 
Piecewise-Linear Convex-Quadratic Approximation 
 

By piecewise-linearizing the well-production 
function ,n mq  using the CC model and representing 

the pressure drop Δ mp  with a convex-quadratic 
function, the oil production optimization problem is 
approximated by an MICP problem: 
 i( ): max   ( )   ( )

1 
m nm n

mm

POP f g c q
Î Î

Î

m = -

- e
m

å å

å

q
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             (13k) 

 
For all m Î : 
 ,  m
m n mnÎ= åq q



          (13l) 

 ,min , max  m m m£ £q q q           (13m) 
 

,S Δ 0mm m mp p p+ - -e £           (13n) 
 0me ³                 (13o) 
 , ,{0,1},  ,n m n mP nm Pd Î " Î " Î          (13p) 

 {0,1} , ny nÎ " Î             (13q) 

 , {0,1} ,  ,   n m nz n mÎ " Î " Î          (13r) 

 

where  ( )Δ :m m m mm mT T mp Q c= + +q q b q  

 
The approximation error for the well-production

functions is controlled by the number and location of 
breakpoints. On the other hand, the pressure-drop 
error depends on the quadratic models obtained by 
SDP optimization, but also on the penalty factor m . 

Let ( )mw  be a vector with the solution to ( )POP m . 
Our solution strategy consists in solving a problem 
sequence { ( })kPOP m  with decreasing km  until 

approximation errors εm  are sufficiently small. At 
iterationk , problem ( )kPOP m  is solved starting 

from 1( )k-mw  which is feasible for ( )kPOP m . 

Notice that the ( )kPOP m  formulation encom-

passes the three cases considered for Δ mp . If Δ mp  

is an underestimation, then εm  will be driven to zero 
by the suggested iterative strategy and ( )POP m will 

induce an upper bound when ε 0m =  for all m . In 
this case, the excess variables and the penalty factors 
can be removed altogether, allowing ( )POP m  to be 
solved only once since it will be unaffected by the 

choice of m . On the other hand, when Δ mp  over-

estimates the true pressure drop, ( )POP m  will be a 
handy approach to find a nearly optimal solution 
when the problem becomes infeasible without the 
excess variables. 
 
Fully Piecewise-Linear Approximation 
 

The MILP approximation for the oil production 
optimization problem is obtained from ( )POP m  by 

eliminating the excess variables εm , along with the 
penalty factor in the objective function, and re-
placing (13n) with a three-dimensional piecewise-
linear formulation using the CC model: 
 

o g w o g wo g w , , , ,( , , ) ( ) Ω  mm m mk k k k k kk k k Î

= åq q
 

     (14a) 

 
 o g wo g w , ,( , , ) o) g w( .Δ Ω

Δ ( , , )m
m mk k kk k k m

p
p k k kÎ

= å
        (14b) 

 

,S Δ  mm mp p p= +             (14c) 
 

o g w o g w, ,Ω 0 ,  ( , , ) ( )m mk k k k k k³ " Î        (14d) 
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 {0,1}my Î             (14i) 
 {0,1} , m mPy PÎ " Î         (14j) 
 
with the parameters: 
 

 o g w, ,mk k kq  is the fluid flow of oil o( )k , gas ( )gk , and water w( )k  of the vertex o g w( , , )k k k  

in the domain ofΔ mp ; 

 
m  is the set of polytopes whose union defines 

the domain of the pressure-drop function; 
 

o g w, ,( )m mk k k Í   is the set of polytopes 

that contain vertex o o w( , , )k k k ; 

 ( )m   is the se of all vertices appearing in the 

set of polytopes m ; 
and the additional variables: 

 
mPy  is a binary variable associated to polytope mP Î  which assumes the value 1 when the convex 

combination is confined toP ; 

 o g w, ,   Ωmk k k  is a variable with the weight associ-

ated to vertex o g w( , ,  ) ( )k k k Î  ; 

 
my  is an auxiliary binary variable which takes 

on the value 1 when manifold m  receives production. 
As before, the bound constraint (13m) is implic-

itly imposed by the domain of the PWL approxima-
tion of the pressure-drop relation. 
 
 

COMPUTATIONAL ANALYSIS 
 

This section evaluates the MICP formulation com-
putationally. First, a synthetic oil field is instantiated 

in a commercial multiphase-flow simulator honoring 
the characteristics of real-world oil fields. Break-
points for well-production functions and pressure 
drops in flow lines are obtained by sampling the 
simulator, which are used to yield piecewise-linear 
models for ,n mq  and quadratic approximations for Δ mp . Finally, the performance and solution quality 
of the MICP formulation is compared with the MILP 
formulation and an MINLP formulation obtained 
from MICP. 
 

Oil Field Scenario 
 

Inspired in a scenario from (Kosmidis et al., 2004), 
a synthetic oil field was put together for the purpose 
of computational and simulation analysis (Silva et 
al., 2012). This field consists of two separators with 
a limited separation capacity and an operational pres-
sure of 300 psia ,S( )mp . 

Figure 1 illustrates the structure of the gathering 
system of the synthetic oil field. Separator 1 is con-
nected to an adjoint manifold by a flow line of 100 m, 
whereas separator 2 is connected to another manifold 
by a flow line of 50 m. All of the 16 gas-lifted oil 
wells can be routed to one of the manifolds; how-
ever, wells 1 to 8 are closer to manifold 1, while 
wells 9 to 16 are closer to manifold 2. The wells are 
limited in the amount of fluids they can handle and 
lift-gas injection rates should be within bounds when 
the wells are producing. 

The oil field was modeled with the Pipesim 
simulator, which allowed us to obtain breakpoints for 
piecewise-linearization of the well-production func-
tions and pressure-drop points for the synthesis of 
quadratic approximations. 

 
Figure 1: Gas-lift production network. 

 

Approximation Analysis of Pressure Drop 
 

Several strategies were tested in order to find the 
model which fits the sample data best. The minimi-
zation of the 1l -, 2l -, and l¥ -norm of the relative 

and absolute error vectors were considered. Because 
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the visual analysis was not possible, the concave- 
and convex-quadratic fittings of the sample data 
(pressure drop) were analyzed. The different strate-
gies considered for pressure-drop approximation with 
quadratic functions are shown in Table 1. 
 
Table 1: Pressure drop approximation strategies.  
 

Function type 
Concave 
Convex 

Norm 
1l   

-norm 

2  l  
-norm l¥ -norm 

Error type 
Absolute Error (min ae ) 

Relative Error ( %mine ) 

 
To find the approximations according to the 

strategies of Table 1, the corresponding variations of 
the curve fitting problem CF , given in Eq. (12), 
were implemented in YALMIP (Löfberg, 2004) and 
solved with the SDP solver SeDuMi version 1.3 
(Peaucelle et al., 2002). The curve fitting problems 
were solved in a workstation running Ubuntu Linux 
with 64 bits. Eq. (12c) was replaced with 0m mTQ Q=   for the concave approximation, while 

Eq. (12a) was modified depending on the error type 
and norm. In all, 729 breakpoints consisting of the 
combination of 9 gas-flow rates (in the range from 
137,777 to 1,240,000 m3/d), 9 oil-flow rates (from 
400 to 3,600 m3/d), and 9 water-flow rates (from 
92.2 to 830 m3/d) were sampled from Pipesim. 

Intending to compare the curve fitting strategies, 
we established four quantitative indexes consisting 
of the maximum and mean values for the absolute 

(
ae ) and relative error (

%e ) induced by the resulting 
quadratic formulations. Table 2 shows these quanti-
tative indexes with absolute errors given in psia and 
relative errors given in percentage. 

The experiments are characterized by a tuple 

1 2 3, ,m m m  where Î1 { }m convex, concave  indicates 

the curvature, 2 1 2{ , , } m l l l¥Î indicates the error vector 

norm, and a %3 {min ,  min }m Î e e  indicates minimiza-

tion of absolute or relative error. 
Analyzing the error indexes, it can be noticed that 

the strategies with concave curvature yield a worse 
fit than their convex counterpart: 2 3concave, ,m m  

is worse than 2 3convex, ,m m  for all 2m  and 3m . 

Further, the convex strategies that minimize relative 
error tend to induce a better fit than the convex strate-
gies that minimize absolute error: e2convex, ,min am  

is worse than %2convex, ,minm e  for all 2m . The 

remaining issue is the choice of the error norm 2m  for 

the strategy %2 convex, ,minm e . Because the mean 

errors obtained with the strategy convex, ,l¥  %mine  are relatively high, the remaining choices are 

1l  and 2l . The strategy %1convex, ,minl e  was 

chosen for the computational experiments because 1l  produced lower mean error in absolute and 

relative terms. 
 
Computational Analysis 
 

The MILP and MICP formulations were pro-
grammed in AMPL and solved with CPLEX 11 in an 
Intel Core 2 Quad at 2.93 GHz, running on a 64-bit 
Linux workstation, with 4 GB of RAM. An MINLP 
formulation was obtained from MICP by imposing 
the pressure balance at equality on the flow lines 
(i.e., replacing inequality (13n) with an equality) was 
also programmed in AMPL, but solved with the 
global solver SCIP 3.0 (Achterberg et al., 2008; 
Achterberg, 2009) on the same workstation. All 
experiments ran with a time limit of 10 000 seconds 
(≈2.8 hours). 

 
Table 2: Error analysis of the (concave and convex) quadratic approximations.  

 

Curvature 
( 1m ) 

Type 
( 3m )  

Norm ( 2m ) 

1l -norm 2l -norm l¥ -norm ae  %e  ae  %e  ae  %e  

Convex 
min ae  

Mean 
Max 

4.27 
27.17 

7.05% 
55% 

4.53 
24.11 

7.05% 
50% 

6.88 
15.09 

9.67% 
105% %mine  

Mean 
Max 

4.49 
25.49 

6.47% 
46% 

5.30 
24.73 

6.97% 
36% 

12.42 
27.58 

12.15% 
19% 

Concave 
min ae  

Mean 
Max 

4.40 
38.95 

15.28% 
727% 

4.74 
31.49 

12.38% 
588% 

7.58 
16.33 

12.43% 
305% %mine  

Mean 
Max 

7.20 
39.58 

9.68% 
334% 

11.66 
57.89 

11.61% 
120% 

21.61 
85.12 

17.87% 
33% 
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The lift-gas availability was varied in three 
different situations: the compressor has full capacity 
in the first case (High), half in the second (Medium), 
and only the capacity for maximizing the production 
of a single well (Low). This variation in compressing 
capacity aims to assess the relative performance      
of the formulations under disparate operational 
conditions. 

The quality of approximation varies according to 
two different resolutions: a moderate number of 
polytopes in the PWL functions (Moderate), and a 
considerably high number of polytopes (Fine). The 
Moderate resolution has 18 polytopes (squares) for 
the WPC curve (6 breakpoints for injection rate, and 
3 for manifold pressure), and 125 polytopes (cubes) 
for the pressure-drop function (5 breakpoints for 
each phase flow). The Fine resolution has 66 poly-
topes (squares) for WPC curves (11 breakpoints for 
injection rate, and 6 for manifold pressure), and 103 
polytopes (cubes) for pressure-drop functions (10 
breakpoints for each phase flow). The goal for vary-
ing the resolution is to evaluate the trade-off between 
the quality of approximation and the relative 
performance of the formulations.  

For the sake of simplicity, we assume that n=  , the number of breakpoints for inq  is ,  n m K=  and the number of breakpoints for mp  

is ,| |n m R=  in the well-production functions, 

which imply , ( 1)( 1)n m K R= - -  for all m  and n . Further, the number of breakpoints in each 

dimension (oil, gas, and water) for Δ mp  is W  which 

implies 3( 1)m W= -  for allm . Table 3 gives the 

size of the conceptual MINLP, MILP and MICP 
formulation as a function of these parameters, along 
with the actual size of the Moderate and Fine 
instance. The size of the MICP and the MINLP 
formulation obtained by imposing an equality on the

pressure balance are the same. 
For solving ( )POP m , an iterative process was 

followed in which the penalty factor was initialized 

as 0 1m = , and updated as 1 /10k k+m =m , until me  

became lower than 10-6. Table 4 shows the execution 
time in seconds and the final dual gap of the 
solutions obtained with these formulations. For 
MICP, the table also provides the total number of 
iterations performed and the maximum slack on the 
pressure constraint (13n), i.e., 

,max Δ  : .mm S mp p p mì üï ïï ï+ - Îí ýï ïï ïî þ
  

The computational experiments revealed that the 
production optimization problem may not be 
efficiently solved with the MILP and MINLP 
formulation: 
 The MILP formulation reached the global 

optimum with the Moderate resolution for all 
compression capacities. With a Fine resolution, it 
was solved to optimality for high capacity, but failed 
to close the primal-dual gap with medium and low 
compression capacities. 
 The MINLP formulation was solved more 

efficiently than the MILP formulation for the 
Moderate resolution, but the primal-dual gap could 
not be closed with the Fine resolution. 

On the other hand, globally optimal solutions 
were found relatively quickly using the MICP 
formulation for all instances, arguably due to the 
gradient information provided by the convex-
quadratic approximations and the reduced number of 
binary variables. 

It can also be noticed that the approximation of 

the pressure-drop equation,  ,SΔ m m mp p p= -  with 
inequality (13n) was very accurate. This behavior 
corroborates the hypothesis that this inequality is 
binding, with the slack in the inequality being 
essentially zero. 

 
 

Table 3: MILP and MICP formulation size.  
 

Property 

 MILP MICP 

MINLP Theoretical Moderate Fine Theoretical Moderate Fine 

Integer variables ( )O MN  3( ) O MNW  2 226 24 836 ( )O MNKR  368 1 648 

Continuous variables ( )O MN  3( )O MW MNKR+ 962 4 248 ( )O MNKR  697 2 234 

Linear constraints ( )O M N+  3( )O MW MNKR+ 1 707 6 529 ( )O MNKR  1 459 4 531 

Nonlinear constraints ( )O MN  - - - ( )O M  2 2 
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Table 4: Computational time of formulations. 
 

Lift-gas availability Models Time (s) Gap Iterations Slack 

High 

MILP-Moderate 15.21 0.00% - - 
MICP-Moderate 5.75 0.00% 3 4.8×10-8 
MINLP-Moderate 28.87 0.00% - - 
MILP-Fine 66.99 0.00% - - 
MICP-Fine 39.75 0.00% 5 0 
MINLP-Fine 10 000.00 0.001% - - 

Medium 

MILP-Moderate 535.38 0.00% - - 
MICP-Moderate 6.36 0.00% 5 5.4×10-9 
MINLP-Moderate 40.76 0.00% - - 
MILP-Fine 10 000.00 2.33% - -

MICP-Fine 18.40 0.00% 5 1.5×10-10 
MINLP-Fine 10 000.00 2.65% - - 

Low 

MILP-Moderate 715.39 0.00% - - 
MICP-Moderate 32.72 0.00% 6 0 
MINLP-Moderate 46.39 0.00% - - 
MILP-Fine 10 000.00 4.68% - - 
MICP-Fine 11.67 0.00% 5 2.3×10−9 
MINLP-Fine 10 000.00 1.07% - - 

 
Simulation Analysis 
 

This section presents an approach for analyzing 
and reducing mean errors between the values of 
process variables calculated with the simulator and 
their predictions obtained with the MILP and MICP 
formulations. The solutions obtained with the MICP 
and MINLP formulation were essentially identical. 
This approach called off-line simulator-optimizer-
application loop is shown in Figure 2. 
 

 

Figure 2: Off-line simulator-optimizer-application 
loop. 
 

Aiming to reduce the discrepancy between opti-
mization models and the process simulation model, 
the off-line loop applies four steps: 

Step 1:  The application gives the simulator an 
initial resolution quality. 

Step 2:  The nonlinear functions are sampled in 

the multi-phase flow simulator. 
Step 3:  The optimizer receives the sample break-

points as inputs and finds a solution providing lift-
gas rates, well-manifold routes, flow rates, and pres-
sure predictions. 

Step 4:  The lift-gas rates and well-manifold routes 
obtained by the optimizer are injected into the simu-
lator. Then, the values calculated by the simulator 
and the optimizer predictions are given as inputs to 
the application. A mean error is calculated for the cur-
rent resolution and the application decides whether a 
new iteration is necessary for the optimizer predic-
tions to match simulator values. If the resolution 
quality needs to be improved, a new iteration starts 
from step 1. 

The simulation analysis evaluated the mean errors 
of the scenario with low compression capacity for 
both optimization models (MILP and MICP) con-
sidering two resolution iterations: Moderate and Fine 
resolutions. Tables 5 and 6 present the simulation 
values and the relative errors of the optimization 
model predictions, for Moderate and Fine resolutions 
respectively. The MILP and MICP formulations 
produced the same well-manifold routes. The differ-
ences arise in the multiphase flows handled by the 
manifolds and their pressures. 

The mean of the mean errors of the variables 
presented in Table 5 is 8.96% for MILP-Moderate 
and 9.53% for MICP-Moderate. MILP-Moderate is 
slightly more precise than MICP-Moderate. The 
predictions for water flows in manifold 2 were con-
siderably different than the values calculated by the 
simulator (28.51% and 31.23%). This might be at-
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tributed to an insufficient number of breakpoints to 
represent the nonlinear characteristics of well-per-
formance and pressure-drop curves. 

According to Table 6, the simulator-relative er-
rors of the Fine resolution are relatively low when 
compared to the Moderate resolution. The mean of 
the mean errors is 1.02% for MILP-Fine and 3.5% 
for MICP-Fine. Once the resolutions of the MILP 
and MICP are improved, the simulator-relative errors 
decrease and good solutions are reached with both 
formulations. 

The MILP-Fine formulation is more precise and 
achieves a representation quite similar to the real 
process according to the simulator. 

The computational and simulation analyses elicit 
the following remarks: 
 Performance: The computational analysis shows 

that an improvement in the resolution quality has a 
significant impact on the performance of the MILP 
formulation. When the lift-gas delivered by the com-
pression unit is constrained to medium or low, the 
MILP formulation could not reach the global opti-
mum with the Fine resolution. On the other hand, an 

improvement in the resolution quality does not slow 
down the MICP formulation significantly. This result 
was expected since the MICP formulation has the 
advantage of being more compact—the three-dimen-
sional functions (pressure drops) are approximated 
with a quadratic function. 
 Process Representation: The analysis indi-

cates that both MILP and MICP formulations reach 
better solutions when the approximation resolution is 
improved (the number of sampled breakpoints is in-
creased). In order to reduce the optimizer prediction 
errors, some iterations of the off-line simulator-opti-
mizer-application loop will be necessary to deter-
mine a sufficient number of breakpoints for a satis-
factory approximation of the nonlinear functions. 
 Extrapolation of the Sampled Region: The 

MICP formulation was bound to the same sampled 
region of the MILP formulation. However, the MICP 
approach is able to extrapolate out of the sampled 
region within which the convex-quadratic approxi-
mation was fitted. It might not be a good approxima-
tion, but at least it gives us a lead about the existence 
of better operating points. 

 
 

Table 5: Comparison between decision variables of MILP and MICP with moderate approximation. 
 

Objective ($) 
Manifold MILP-Moderate Error (%) MICP-Moderate Error (%) 

 2 277 110.00 5.08% 2 335 690.00 2.66% ( )mp psia  
1 391.77 4.01% 386.06 5.61% 
2 383.41 1.88% 371.92 1.06% 3g (m d)/mq  1 479 023.00 10.26% 495 578.00 7.89% 
2 629 903.00 1.00% 641 826.00 1.50% 3o (m d)/mq  1 1 307.70 8.08% 1 341.24 5.72% 
2 1 693.28 9.30% 1 742.16 12.38% 3w m( d)/mq  
1 316.73 8.63% 322.10 10.86% 
2 349.76 28.51% 459.96 31.23% 

 
 

Table 6: Comparison between decision variable of MILP and MICP with fine approximation.  
 

Objective ($) 
Manifold MILP-Fine Error (%) MICP-Fine Error (%) 

 2 525 600.00 0.65% 2 589 710.00 3.16% ( )mp psia  
1 419.08 0.88% 404.14 2.21% 
2 391.88 0.36% 380.61 2.89% 3g (m d)/mq  1 558 411.00 0.87% 564 921.00 3.85% 
2 672 043.00 0.48% 696 707.00 2.60% 3g (m d)/mq  1 1 462.07 0.62% 1 507.72 3.77% 
2 1 810.50 0.60% 1 853.79 3.05% 3w m( d)/mq  
1 327.03 3.01% 336.16 6.12% 
2 431.15 1.34% 443.34 3.85% 
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SUMMARY 
 

This work proposed a mixed-integer convex 
programming formulation for oil production opti-
mization of gas-lifted oil fields subject to opera-
tional, routing, and pressure constraints. The MICP 
formulation arises from the piecewise-linearization 
of the well-production functions and their composi-
tion with convex-quadratic approximation functions 
of the pressure drops. Besides being relatively com-
pact, the convexity of the MICP formulation allows 
for optimization solvers to reach globally optimal 
solutions. The piecewise-linear models arose from 
the convex combination of well-production points 
sampled in the domain of lift-gas injection and mani-
fold pressure, whereas the convex-quadratic models 
were obtained by solving a semi-definite program for 
fitting the model to pressure-drop points sampled 
from a multiphase-flow simulator. 

A computational analysis performed in a syn-
thetic oil field modeled in a multiphase-flow simula-
tor showed that the MICP formulation is more 
efficient than the MILP and MINLP formulation. 

A simulation analysis performed in the same oil 
field showed that the MILP and MICP formulations 
reach better solutions when the approximation reso-
lution is improved. Although the MILP formulation 
is more precise, it might not be efficient when the 
approximation resolution is fine. The MICP formula-
tion approximates the three-dimensional functions 
(pressure drops) with a single quadratic function re-
sulting in a more compact formulation. This MICP 
approach has the advantage of not being significantly 
slowed down when the resolution quality is im-
proved. 

Future research directions include: 
 the design of more detailed models for pressure 

drop, possibly including temperature and outlet pres-
sure in the pipelines; 
 the development of piecewise-convex models, 

which could more precisely approximate complex 
functions while being more compact than piecewise-
linear models; and 
 the integration with compressor scheduling 

models (Camponogara et al., 2011; Camponogara et 
al., 2012). 
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NOMENCLATURE 
 
Parameters 
 N  number of wells  M  number of manifolds  max iq  maximum lift-gas rate which 

represents the compressor 
capacity 

 

,min  inq  lift-gas injection lower bound  ,maxinq  lift-gas injection upper bound  

,Smp  nominal pressure for 
separator 

 

,Lnq  lower bound on well flow 
rate 

 

,Unq  upper bound on well flow 
rate 

 

,minmq  minimum manifold flow rate  ,maxmq  maximum manifold flow rate  ,maxmp  maximum manifold pressure  

 
Sets 
 
  set of wells  
 set of manifolds  m  subset of wells that can be 

connected to manifold m  
 

n  manifolds that well n  can 
send its production 

 

 set of phase flows  
 set of polytopes   ( )V P  set of vertices of a polytope  ( )   set of all vertices  ( )P v  set of polytopes that contain 

vertex v  
 

,n m  breakpoints for the lift-gas 
rate when well n  is connect 
to manifold m  

 

,n m  manifold pressure 
breakpoints when well n  is 
connected to manifold m  

 

,n m  set of polytopes with vertices 
in , ,n m n m´   

 

, i r,( )n m q p  subset of polytopes that 
contain vertex i r( , )q p  

 

m  set of polytopes in the 
domain of the pressure drop 
function 
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o g w( , , )m k k k
 

subset of polytopes 
containing vertex o g w( , , )k k k  

 

( )m   set of all vertices in the 
domain of the pressure drop 
function 

 

 
Variables 
 inq  gas injection rate for well n   ny  well n  activation  ,n mz  connection of well n  to 

manifold m  
 ,n mhq  flow of phase h  from well n  to manifold m  
 mq  total multiphase flow handled 

by manifold m  
 mp  pressure in manifold m   

vλ  weight for vertex v  in a 
piecewise-linear 
approximation 

 

Py  polyhedron selection in 
piecewise-linear 
approximation 

 

i , r, ,n mq pλ  weighting variable for vertex i r( , )q p  
 

,n mPd  binary variable indicating 
that a polytope P is active 

 

,n mq  approximation of well 
production 

 

Δ mp  
approximation of pressure 
drop in the flowline of 
manifold m  

 

me  excess variable for 
approximation error of 
pressure drop 

 

o g w, ,Ωmk k k  weighting variable for vertex o g w( , , )k k k  
 

my  auxiliary variable indicating 
that a manifold m  is 
receiving production 

 

mPy  binary variable indicating 
that a polytope mP Î  is 
active 

 

 
Functions 
 g  objective profit function  c  objective cost function  ,n mq  production function of well n  when connected to 

manifold m  

 

Δ mp  pressure drop in the flow 
line of manifold m  
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APPENDIX 
 

SEMI-DEFINITE REFORMULATIONS 
 

The strategies for finding quadratic approxima-
tions are a variation of problem CF  given in Equa-
tion (12), which can be easily recast as a standard 
SDP by replacing the objective with: 
 min kkÎ jå



              (A1a) 

 

and introducing the inequalities: 
 

 ,, ,Δ Δ      , Δ m km kk km kp p kp-j £ £j " Î       (A1b) 

The l¥ - norm for approximation error can be 

handled in a similar manner by simple manipulation 
of problem CF . It suffices to introduce inequality 
(A1b), introduce the inequalities  , k kj £j " Î , 

and replace the objective withminj . 
The representation of the square of the approxi-

mation error ( 2l -norm) requires the use of Schur 

complement since quadratic functions are not explic-
itly allowed in SDP. The synthesis of convex-
quadratic models using the 2l -norm of relative errors 

can be cast as an SPD program: 
 

, ,min  m m m kQ c kÎ jåb


            (A2a) 
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 ( ), , ,   ,Δ    s. , t. : Tm k m k m k m km m mTp Q c
k

= + +

" Î

q q b q


(A2b)

 
 





,, ,,, ,
Δ Δ   Δ  Δ Δ   Δ

0 , 

m km k m km km k k
T

m k
p pI pp pp

k

é ùæ ö÷çê ú- ÷ç ÷ê úç ÷ç ÷ê úç ÷æ ö ÷çê ú÷ è øç - ÷çê ú÷ç j÷çê ú÷ç ÷ê ú÷çè øê ú
ë û

" Î

     (A2c) 

   0m mTQ Q=               (A2d) 

 1 ,   , m m mQ c´ ´
Î Î Îb           (A2e) 

 
According to Schur complement, Eq. (A2c) is 

equivalent to: 
 

 



, ,, ,1, ,
2,, ,

Δ Δ   Δ Δ      0  Δ Δ
Δ Δ    Δ

m k m km k m kk m k m k
m km k k

T

k m

p p p pIp p
p pp

-

æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷- -ç ç÷ ÷ç ç÷ ÷j - ÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷è ø è ø

æ ö÷ç ÷ç ÷ç ÷-ç ÷ç ÷j ³ ÷ç ÷ç ÷ç ÷ç ÷ç ÷è ø



 
Notice that the fitting of concave-quadratic func-

tions is achieved by using   0mQ   as the condition 

on the Hessian. Approximations that minimize abso-
lute error are obtained by eliminating the denomina-

tor ,Δ m kp from the equations that calculate error. 

The gas-flow rates are of the order of 610  and

when squared reach values of the order of a trillion 

of 3m / d , which are far larger than the water- and 
oil-flow rates. Thus, normalization of the flow rates 
was required before using the SDP solver to find a 

quadratic approximation Δ .m
p  

The normalization is obtained with a diagonal 
matrix mT  as follows: 

 

,o

,g

,w

0 0

0 0

0 0

 
 
 
 
 





m

m m

m

T

T T

T

      

 ˆ m m mT=q q  

 
where q̂m  is the normalized multiphase-flow rate 

and m m mT  T T,o ,g ,w( , )  is the maximum oil-flow rate 

(gas-flow and water-flow rate). Solving problem 
CF  using the normalized flow-rates q̂m  yields a 

normalized quadratic approximation function given 

by ˆ , b̂m mQ  , and ˆmc . Thus, 

 

 ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

m

m m m m m m

m m m m m m m m m

m m m m m m m m m

T
m m m m m m

p  Q    c

T  Q T   T  c

T  Q T  T   c

Q    c

ˆˆˆ ˆ ˆ ˆ
ˆˆ ˆ

ˆ( ˆ
Δ

ˆ )

T T
T T

T T T
T

T

= + +

= + +

= + +

= + +

q q b q
q q b q

q q b q
q q b q

 

 

by defining, m m m mQ T  Q TˆT= , m m mT  ̂( )T=b b , and ˆ=m mc   c . Further, it can be shown that 0mQ   if and 

only if ˆ 0mQ  , provided that mT  is non-singular. 

 


