Candida tropicalis as an emerging pathogen in Candida meningitis: case report and review

ABSTRACT

Candida species are an uncommon cause of meningitis. Given the rarity of this infection, the epidemiology, prognosis, and optimal therapy for Candida meningitis are poorly defined. The authors report on a paraplegic patient due to spinal cord injury who developed C. tropicalis meningitis. In addition, we review and discuss other reported cases of C. tropicalis meningitis in the medical literature.

Keywords: Candida; meningitis.


INTRODUCTION

Candida species are an uncommon cause of meningitis. Given the rarity of this infection, the epidemiology, prognosis, and optimal therapy of Candida meningitis are poorly defined. Risk factors for meningitis are similar to those associated with invasive candidiasis. The risk of developing this complication is unknown. It occurs in immunosuppressed patients, in patients treated with broad-spectrum antibiotics and receiving parenteral nutrition or result of disseminated disease. In addition, two specific patient groups, premature neonates and neurosurgical patients, are at increased risk.

The case of a paraplegic patient due to a spinal cord injury who developed C. tropicalis meningitis is herein reported and the cases reported in the medical literature are reviewed and discussed medical literature.

CASE REPORT

A 26-year-old man was admitted to Hospital das Clínicas, Porto Alegre, Brazil, in February 2009 complaining of nausea, vomiting, headache and fever (39°C). Physical exam revealed neck stiffness without any focal neurological signs. Previous medical history included paraplegia due to a spinal injury (2002), decubitus ulcers (2002), pelvic osteomyelitis (2006) and recurrent urinary tract infections. A lumbar puncture yielded cerebrospinal fluid (CSF) with 2,500 leukocytes/mm³ (100% neutrophils), an elevated protein level of 98 mg/dL, and a reduced glucose level of 34 mg/dL. No fungi and bacteria were seen on Gram stain. CSF cultures were negative for bacteria and fungi. Chest-X ray, head CT scan, and transesophageal echocardiogram results were normal. Blood cultures and HIV serologic test results were negative. Urine cultures grew a mixed flora of Gram-positives and negatives, but urinary Gram-stain revealed innumerable yeasts compatible with Candida spp. Despite broad-spectrum 96-hours antibiotic therapy including ceftipime, vancomycin, and metronidazole, the patient persisted with fever and headache. Repeated lumbar puncture showed 106 leukocytes/mm³ (70% neutrophils, 30% lymphocytes), a protein level of 40 mg/dL, and a glucose level of 24 mg/dL. At 24 hours, the primary plates and broth culture grew a budding yeast that was identified with a 99% probability as C. tropicalis on API 20C (bioMérieux). The isolates fluconazole MIC was 0.025 µg/mL on disk diffusion susceptibility testing. The patient was treated with amphotericin B deoxycholate (1.0 mg/kg/day) for five days but progressed to respiratory insufficiency, coma and death.

Authors
Luciano Z. Goldani1
Rodrigo P. Santos2
1Infectious Diseases Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil.
2Infectious Diseases Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil.

Submitted on: 03/05/2010
Approved on: 05/21/2010

Correspondence to:
Dr. Luciano Z. Goldani
Infectious Diseases Unit
Hospital de Clínicas de Porto Alegre
Ramiro Barcelos 2350
Porto Alegre, 90064-003
Brazil

We declare no conflict of interest.
DISCUSSION

*C. albicans* accounts for 70%–100% of all fungal meningitis isolates. Other reported species include *C. glabrata, C. tropicalis, C. parapsilosis*, and *C. lusitaniae*. As shown in Table 1, there have been few cases of *C. tropicalis* meningitis described in the medical literature. In contrast to meningitis caused by *C. albicans*, *C. tropicalis* meningitis has been increasingly reported in adults. Most cases of *C. tropicalis* are postoperative complications of head and neck surgery, including

<table>
<thead>
<tr>
<th>Cases/Series</th>
<th>Age</th>
<th>Sex</th>
<th>Characteristics</th>
<th>Treatment</th>
<th>Outcome</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>54</td>
<td>Male</td>
<td>Mastoid exploration; otitis chronic</td>
<td>AmB1</td>
<td>Alive</td>
<td>Chattopadhyay</td>
</tr>
<tr>
<td>2</td>
<td>49</td>
<td>Male</td>
<td>Occipital craniotomy; cerebellar hemorrhage</td>
<td>FCZ</td>
<td>Alive</td>
<td>Dawson et al.</td>
</tr>
<tr>
<td>3</td>
<td>Full-term newborn</td>
<td>Male</td>
<td>Intracranial hemorrhage; respiratory distress; prolonged antibiotic therapy</td>
<td>AmB+5’flu2</td>
<td>Alive</td>
<td>Ahuja et al.</td>
</tr>
<tr>
<td>4</td>
<td>54</td>
<td>Male</td>
<td>Mastoid exploration, chronic otitis</td>
<td>AmB+5’flu</td>
<td>Alive</td>
<td>Chalwick et al.</td>
</tr>
<tr>
<td>7</td>
<td>43</td>
<td>Male</td>
<td>Hodgkin’s lymphoma; chemotherapy</td>
<td>AmB</td>
<td>Death</td>
<td>Hernig et al.</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>Female</td>
<td>Myelomeningocele correction; ventricular-peritoneal shunt</td>
<td>AmB+FCZ3</td>
<td>Alive</td>
<td>Byers et al.</td>
</tr>
<tr>
<td>9</td>
<td>66</td>
<td>Female</td>
<td>Corticosteroids</td>
<td>-</td>
<td>Death</td>
<td>Gorell et al.</td>
</tr>
<tr>
<td>10</td>
<td>63</td>
<td>Male</td>
<td>Syringomyelia</td>
<td>AmB+5’flu</td>
<td>Alive</td>
<td>Phanthumchinda et al.</td>
</tr>
<tr>
<td>11</td>
<td>51</td>
<td>Female</td>
<td>Neurinoma, ventriculo-peritoneal shunt, hydrocephalia</td>
<td>AmB+5’flu</td>
<td>Alive</td>
<td>Miñambres et al.</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>7 children with widespread, leukemia neutropenia, total parental nutrition, costicostoids, broad spectrum antibiotics</td>
<td>Yes</td>
<td>Death</td>
<td>Flynn et al.</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>-</td>
<td>11 children with leukemia, TPN, neutropenia</td>
<td>Yes</td>
<td>Death</td>
<td>McCullers et al.</td>
</tr>
<tr>
<td>14</td>
<td>Newborn</td>
<td>Male</td>
<td>Sepsis, broad spectrum antibiotics</td>
<td>Yes</td>
<td>Death</td>
<td>Aldress K et al.</td>
</tr>
<tr>
<td>16</td>
<td>68</td>
<td>Female</td>
<td>Cavernous sinus tumor; lumbar drainage, bacterial meningitis, broad spectrum antibiotic therapy</td>
<td>AmB+5FC, shunt removal</td>
<td>Alive</td>
<td>Nguyen et al.</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>Female</td>
<td>Prematurity, hydrocephalus, peritoneal-ventricular shunt malfunction</td>
<td>AmB+5FC, shunt removal</td>
<td>Alive</td>
<td>Chiou et al.</td>
</tr>
</tbody>
</table>

AMB, amphotericin B deoxycholate; 5’flu, 5’Fluorocytosine; FCZ, fluconazole.
mastoid exploration, craniotomy, and ventricular-peritoneal shunt. Additional cases of C. tropicalis meningitis in adults have been reported in immunosuppressed patients, patients taking prolonged broad-spectrum antibiotic therapy or as a result of disseminated disease, as observed in our case, which developed a possible Candida urinary tract infection with later dissemination to the central nervous system.

Symptoms such as those presented by our patient are similar to other Candida meningitis and include fever, headache, altered mental status, and meningism. Focal neurologic signs are rare. The diagnosis of meningitis is established by a positive CSF culture. Multiple CSF specimens may be required. CSF parameters are variable, with a mild lymphocytic or polymorphonuclear pleocytosis and an increased protein level. Fungal elements are generally not seen. Thus, CSF abnormalities are indistinguishable from cryptococcal, tuberculous, and some bacterial meningitides. Although fluconazole resistant isolates of C. tropicalis have been occasionally reported, the isolate of our case was fluconazole-susceptible.

Despite appropriate therapy with amphotericin B plus 5’fluorocytocine, mortality was seen in 5 of 17 patients (30%) with C. tropicalis meningitis. In addition to head and neck postoperative procedures, physicians should have a high index of suspicion for Candida meningitis in patients taking broad-spectrum antibiotics who also present an initial source of Candida infection. Non-albicans species identification and appropriate susceptibility tests should be considered for appropriate management of Candida meningitis.

REFERENCES