ANTIBIOTIC RESISTANCE IN SALMONELLA ENTERITIDIS ISOLATED FROM BROILER CARCASSES

Martha Oliveira Cardoso1; Aldemir Reginato Ribeiro1; Luciana Ruschel dos Santos2*; Fernando Pilo1; Hamilton L.S. de Moraes3; Carlos Tadeu Pippi Salle1; Silvio Luís da Silveira Rocha1; Vladimir Pinheiro do Nascimento1

1Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil; 2Faculdade de Agronomia e Medicina Veterinária, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, RS, Brasil

Submitted: May 23, 2005; Returned to authors for corrections: January 18, 2006; Approved: May 06, 2005

SHORT COMMUNICATION

ABSTRACT

Eighty Salmonella Enteritidis strains isolated from broiler carcasses between May 1995 and April 1996 in the State of Rio Grande do Sul, Brazil, were tested for antibiotic susceptibility using the disk diffusion method. Resistance to colistin, novobiocin, erythromycin and tetracycline was observed in 100% of the isolates. The strains showed intermediate resistance at different levels to kanamycin (1.25%), enrofloxacin (3.75%), neomycin (3.75%), fosfomycin (20%), sulphonamides (86.25%) and nitrofurantoin (90%). Resistance to ciprofloxacin, norfloxacin, gentamicin, polymyxin B, sulphasalazine and sulphapectin was not found. Since resistance to antibiotics especially those introduced in the last decades, was detected, it is recommended that their use must be based on the results of resistance tests or minimum inhibitory concentration tests.

Key words: antibiotic resistance, broiler carcasses, Salmonella Enteritidis

Antibiotics have been successfully used in poultry for different purposes such as growth promotion, prophylaxis, or therapeutics. However, their indiscriminate use caused an increased bacterial resistance, mainly in Salmonella strains (6).

Live animals are the main source of Salmonella in poultry slaughterhouses, and cross contamination of carcasses during processing with Salmonella, including resistant strains, may occur (5,16). Poultry is a common vector for the transmission of Salmonella (10), and resistant Salmonella may be transmitted to humans via the food chain (1).

In Brazil, Salmonella Enteritidis has been one of the most prevalent serovars isolated in human infections (12) as well as in nonhuman sources, which include broiler carcasses (22), foodstuffs, poultry flocks, environment, sewage, water, animal feed, chilling water, other animals, viscera, stools, unknown sources (24), and raw broilers parts (21).

The present study was carried out with eighty isolates of Salmonella enterica subsp. enterica serovar Enteritidis, detected in broiler carcasses slaughtered between May 1995 and April 1996 in the State of Rio Grande do Sul, Brazil. Each strain was unique, i.e., each strain was isolated from a different carcass.

The strains were isolated using the conventional method for detection of Salmonella, recommended by the Brazilian Ministry of Agriculture and Supply (9). Briefly, twenty-five grams of skin and muscle, collected under aseptic conditions, were taken from each broiler carcass and homogenized in 225 mL of Buffered Peptone Water (BPW)(Merck AG, Darmstadt, Germany), and incubated at 37°C for 24h (pre-enrichment). One mL of the pre-enrichment broth was subcultured into 9 mL of tetrathionate broth (Merck), and 0.1 mL into 9.9 mL of Rappaport-Vassiliadis broth (Merck), and incubated at 36±1.0°C.
and 41±0.5°C respectively (selective enrichment). After 24h, the selective enrichment cultures were streaked onto Rambach and Brilliant Green Novobiocin (Merck) agar plates and incubated at 37°C for 24h. Typical colonies were identified by biochemical and serological tests. Complete antigenic characterization and serovar identification was performed by the Laboratory of Enteric Pathogens of the Oswaldo Cruz Institute (IOC-RJ), Rio de Janeiro.

The *Salmonella* Enteritidis strains were tested for antimicrobial resistance by the disk diffusion method on Mueller-Hinton agar, according to the method recommended by the National Committee for Clinical Laboratory Standards (NCCLS) (19). The following antimicrobial agents were tested: ciprofloxacin 5 μg, colistin 10 μg, erythromycin 15 μg, enrofloxacin 5 μg, fosfomycin 200 μg, gentamicin 10 μg, kanamycin 30 μg, neomycin 30 μg, nitrofurantoin 300 μg, norfloxacin 10 μg, novobiocin 5 μg, polymyxin B 300 U.L., sulphametrim 25 μg, sulphonamide 300 μg, sulphazotrim 25 μg and tetracycline 30 μg.

The results (Table 1) indicated that 100% of the *Salmonella* Enteritidis isolates were resistant to colistin, erythromycin, novobiocin and tetracycline, while showing intermediate resistance, at different levels, to kanamycin (1.25%), enrofloxacin (3.75%), neomycin (3.75%), sulphonamides (86.25%) and nitrofurantoin (95%). On the other hand, none of the *Salmonella* Enteritidis isolates were resistant to colistin, erythromycin, novobiocin and tetracycline, while showing intermediate resistance, at different levels, to kanamycin (1.25%), enrofloxacin (3.75%), neomycin (3.75%), sulphonamides (86.25%) and nitrofurantoin (95%). On the other hand, none of the *Salmonella* Enteritidis isolates were resistant to colistin, erythromycin, novobiocin and tetracycline, while showing intermediate resistance, at different levels, to kanamycin (1.25%), enrofloxacin (3.75%), neomycin (3.75%), sulphonamides (86.25%) and nitrofurantoin (95%).

<table>
<thead>
<tr>
<th>Antimicrobial drug</th>
<th>Number of resistant strains</th>
<th>Resistance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciprofloxacin 5 μg</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Colistin 10 μg</td>
<td>80</td>
<td>100%</td>
</tr>
<tr>
<td>Erythromycin 15 μg</td>
<td>80</td>
<td>100%</td>
</tr>
<tr>
<td>Enrofloxacin 5 μg</td>
<td>3</td>
<td>3.75%</td>
</tr>
<tr>
<td>Fosfomycin 200 μg</td>
<td>16</td>
<td>20%</td>
</tr>
<tr>
<td>Gentamicin 10 μg</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Kanamycin 30 μg</td>
<td>1</td>
<td>1.25%</td>
</tr>
<tr>
<td>Neomycin 30 μg</td>
<td>3</td>
<td>3.75%</td>
</tr>
<tr>
<td>Nitrofurantoin 300 μg</td>
<td>76</td>
<td>95%</td>
</tr>
<tr>
<td>Norfloxacin 10 μg</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Novobiocin 5 μg</td>
<td>80</td>
<td>100%</td>
</tr>
<tr>
<td>Polymyxin B 300 U.L.</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Suphametrim 25 μg</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Sulphonamide 300 μg</td>
<td>69</td>
<td>86.25%</td>
</tr>
<tr>
<td>Sulphazotrim 25 μg</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Tetracycline 30 μg</td>
<td>80</td>
<td>100%</td>
</tr>
</tbody>
</table>

The results obtained for colistin are in disagreement with those found by Berchieri Jr. *et al.* (5), who reported an antimicrobial susceptibility of 100%, in *Salmonella* strains isolated from feces, water, scalding water, chicken carcasses and animal feed in a slaughterhouse in the State of São Paulo, Brazil, and also in disagreement with the results described by Arvanitidou *et al.* (3), who found only 1.61% resistance in *Salmonella* isolated from broiler carcasses in Greece.

Tetracycline had been used as a growth enhancer in food producing animals until 1998, when its use was banned (23). It has also been used as a therapeutic agent, thus the high level of resistance to tetracycline is not surprising (14). The results reported in this study higher than those found by Santos *et al.* (22) in Brazil (6.25%), and also by Antunes *et al.* (2) in Porto, Portugal (36%). According to Frost *et al.* (13), ampicillin, streptomycin and tetracycline resistance are plasmid mediated.

The results regarding sulphonamide and nitrofurantoin indicate high resistance to these drugs, which are in agreement with Tassios *et al.* (26), who worked with *Salmonella* isolated from animals and food between 1987 and 1993, in Greece, and showed high incidence of resistance to sulphonamide (67.34%) and nitrofurantoin (57.82%).

Resistance to enrofloxacin was lower (3.75%) than the 12.2% found by Nascimento *et al.* (18), in *Salmonella* Enteritidis isolated from clinical and environmental poultry samples in Southern Brazil, and lower than the 50% described by Antunes *et al.* (2), in *Salmonella* isolated from poultry products in Porto, Portugal. Resistance to norfloxacin or ciprofloxacin was not detected.

Currently, some authors have observed an increase in quinolone resistance in *Salmonella* (17). This is a worrying finding, because quinolone resistance is chromosomally mediated thus allowing an increase of *Salmonella* quinolone-resistant in humans or animals (20). In Germany, the incidence of quinolone resistance between 1986 and 1998 in *Salmonellae* isolated from cattle, poultry, and pigs, increased in the years following the licensing of this drug (15).

Our findings regarding kanamycin resistance (1.25%) are similar to the 1.2% found by Nascimento *et al.* (18) in *Salmonella* Enteritidis isolated from poultry samples in Southern Brazil, and also to the 2.8% found by Carrañíñana *et al.* (11) in *Salmonella* Enteritidis isolated from a poultry slaughterhouse in Spain, but lower than the 12% found by Blackburn *et al.* (7) in *Salmonella* isolated from food producing animals in the United States.

All isolates of *Salmonella* Enteritidis were susceptible to gentamicin but resistant to erythromycin, results which were similar to those obtained by Blackburn *et al.* (7). After many years of use, gentamicin remains effective against *Salmonella* (2,25). Sulphazotrim and polymyxin B were effective against all *Salmonella* Enteritidis isolates, being in agreement with findings of Santos *et al.* (22), but in disagreement with those of Berchieri and Paulilho (4), who obtained 100% of sulphazotrim resistance in *Salmonella* strains isolated from feed meals.
According Blackburn et al. (7), the prevalence of antibiotics resistance is quite high in Salmonella strains from different places of the United States, also when comparing results from different animal species (chickens, turkey, cattle and swine). The different levels of resistance are attributed to varying degrees of exposure to drug pressures.

The differences between the results of the present paper and those of other researchers, may be explained when several factors, such as differences in origin, time period of collection and sampling procedure (10).

The development of antimicrobial resistance in zoonotic bacteria (e.g.: Salmonella) constitutes a public health risk, as it may potentially affect the efficacy of drug treatment in humans (1). Therefore, the levels of antibacterial resistance found in this study emphasize that antibiotics must be used judiciously, based on previous resistance tests and on the determination of appropriate doses by minimal inhibitory concentration (MIC). These goals can be achieved by the constant training of medical professionals regarding general recommendations for the use of these drugs, in addition to a deeper knowledge of their pharmacokinetics, and especially full knowledge about the microbiology of Salmonella.

ACKNOWLEDGEMENTS

The authors wish to acknowledge CDPA-UFRRs’s staff for the technical assistance, Dr. Lenita Moura for proof reading this paper, and CAPES for the financial support.

RESUMO

Resistência antimicrobiana em Salmonella Enteritidis isoladas de carcaças de frango

Oitenta amostras de Salmonella Enteritidis isoladas de carcaças de frango no período entre maio de 1995 a abril de 1996 no Estado do Rio Grande do Sul, Brasil foram testadas para susceptibilidade antimicrobiana pelo método de antibiograma. O antibiograma das amostras apresentou 100% de resistência a colistina, novobiocina, eritromicina e tetraciclina. Tiveram resistência em diferentes níveis a canamicina (1,25%), enrofloxacina (3,75%), neomicina (3,75%), fosfomicina (20%), sulfonamida (86,25%) e nitrofurantoina (90%) e por outro lado não apresentaram resistência a ciprofloxacina, norfloxacina, gentamicina, polimixina B, sulfametrim e sulfazotrim. A constatação de resistência a antibióticos, inclusive àqueles introduzidos na última década, enfatiza a necessidade de uso responsável de antibióticos, e com base em antibiograma ou concentração inibitória mínima.

Palavras-chave: carcaças de frango, resistência antimicrobiana, Salmonella Enteritidis

REFERENCES

Antibiotic resistance of *Salmonella*


