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The present report describes the development of a technique for automatic wheezing recognition in digitally recorded lung
sounds. This method is based on the extraction and processing     of spectral information from the respiratory cycle and the use of
these data for     user feedback and     automatic recognition. The respiratory cycle is first pre-processed, in order to normalize its
spectral information, and its spectrogram is then computed. After this procedure, the spectrogram image is processed by a two-
dimensional convolution filter and a half-threshold in order to increase the contrast and isolate its highest amplitude components,
respectively. Thus, in order to generate more compressed data to automatic recognition, the spectral projection from the
processed spectrogram is computed and stored as an array. The higher magnitude values of the array and its respective spectral
values are then located and used as inputs to a multi-layer perceptron artificial neural network, which results an automatic
indication about the presence of wheezes. For validation of the methodology, lung sounds recorded from three different
repositories were used. The results show that the proposed technique achieves 84.82% accuracy in the detection of wheezing
for an isolated respiratory cycle and 92.86% accuracy for the detection of wheezes when detection is carried out using groups
of respiratory cycles obtained from the same person. Also, the system presents the original recorded sound and the post-
processed spectrogram image for the user to draw his own conclusions from the data.
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Introduction

According to data from the Brazilian Health Depart-
ment, death caused by respiratory diseases grew 3% from
1980 to 1999, being the fifth mortality cause in Brazil in
1999 (1). In many countries nearly 5% of the population
suffers from asthma and other related chest disorders (2).

Respiratory sounds constitute a relevant source of
information for the investigation of the state of the lungs
and of the other organs, which compose the respiratory
system. As respiratory sounds may be acquired by the
easy and non-invasive auscultation procedure, more rel-
evant information from lung sounds may be extracted and
contribute to reducing the time for diagnosis, consequently
increasing treatment efficiency. Thus, an automated algo-

rithm developed to recognize abnormalities in lung sounds
may be of great relevance to clinical diagnosis.

Abnormal lung sounds may be classified according to
two main categories: crackles and wheezes (2). Wheezes
are musical adventitious lung sounds, also called continu-
ous (3). These adventitious sounds are characterized by a
dominant frequency, usually over 100 Hz (3), and a dura-
tion of more than 100 ms (4). Their presence is related to
partial airway obstruction (3,5). Also, wheezing with un-
forced breathing is correlated with the severity of airway
obstruction. Therefore, its auscultation has been used for
the detection and evaluation of diseases such as children’s
nocturnal asthma (6) and for the evaluation of bronchocon-
striction in asthma (5). The presence of wheezing in infants
has also been used as a parameter to evaluate the predis-



675

Braz J Med Biol Res 42(7) 2009

Methodology for detecting the presence of wheezing

www.bjournal.com.br

position to asthma (7). Other investigations have used
wheezing, among other symptoms, to evaluate the
physician’s and patient’s perception of acute asthma exac-
erbation, compared to objective measurements such as
forced expiratory volume (8).

In contrast, crackles are short, explosive and discon-
tinuous sounds, shorter than 100 ms, usually occurring
during inspiration (4). They are characterized by a rapid
initial pressure deflection followed by a short oscillation
(9). These adventitious sounds are classified as fine crack-
les and coarse crackles based on their duration. Thus, fine
crackles are defined as those lasting less than 10 ms and
coarse crackles are defined as those lasting more than 10
ms (4).

Crackles are a qualitative diagnostic tool (3) and can
be produced either by explosive openings among regions
of the lungs, deflated to residual volume (10), due to
sudden equalization of gas pressure during inspiration or
by change in elastic stress resulting from sudden opening
of closed airways (11).

However, the instrument used for auscultation, the
stethoscope, sometimes does not present an efficient re-
sponse in the acquisition of lung sounds. Basically, this
instrument is simply a sound conduit between the body
surface and the ears (3). Its frequency responses are
rarely tested, rated or compared, with the instruments
being usually chosen for their appearance, reputation and
inadequately supported claim of performance, instead of
their technical characteristics (3). Usually, the frequency
response of the stethoscope favors the lower frequencies,
amplifying those lower than 112 Hz and attenuating higher
frequencies (12). Therefore, the response of the stetho-
scope is insufficient when auscultating pulmonary sounds,
which may have frequency components far above 112 Hz.
Since heart sounds are composed mainly of lower fre-
quencies, they cause much interference when the stetho-
scope is used to auscultate lung sounds, being a cause of
misunderstanding in the auscultation of respiratory sounds.

In clinical practice, some difficulties occur during the
diagnostic process, such as a difference in sensitivity
between the ears, physicians’ practice in the task of recog-
nizing lung sounds, and presence of external and internal
noises, which may cause errors in the identification of the
sound as pathological or normal, impairing the precision of
the diagnosis.

However, lung sounds have naturally non-stationary
signals. This property can be observed both in healthy
normal and abnormal subjects. But this non-stationarity is
more severe in cases of abnormal lung sounds. Therefore,
significant diagnostic information can be obtained from the
frequency distribution of lung sounds, with the selection of

the signal processing technique used to extract this infor-
mation being very important to maximize the efficiency of
extraction (13). This task has motivated many studies on
the classification of lung sounds using frequency analysis
(13-17).

The spectrograms, which are also called sonograms
(4) or respirosonograms, when applied to respiratory sounds
(3), have been widely used for auscultation teaching, lung
sound researching and evaluation of techniques for the
processing of respiratory sounds (3,14-19). However, their
applications are usually restricted to the visualization of
the spectral information of lung sounds. Since wheezes
are musical or continuous abnormalities (3), their pres-
ence demonstrates a typical picture in the spectrogram. In
this image, a wheeze shows continuous horizontal lines,
representing the time interval of the main frequency, and
the presence of other horizontal lines representing the
frequency spectra that compose the wheeze, being usu-
ally harmonic frequencies of the main frequency.

The aim of the present study was to develop a method
for recognizing lung sounds by applying techniques of
image processing based on a normalized spectrogram
obtained from lung sounds. The proposed method in-
creases the visualization of wheezing picture characteris-
tics and uses them as the input to an artificial neural
network-based pattern recognition system, which classi-
fies sounds as being with or without wheezes.

Material and Methods

The proposed technique consists of a dynamic struc-
ture developed to extract the parameters, which define the
wheezing characteristics, eliminating the redundant or in-
expressive data, and applying the pattern recognition al-
gorithm itself. In order to implement and test the proposed
methodology, computer software was developed. The soft-
ware was implemented using the C++ language. It accepts
only lung sounds recorded in wave files and generates
spectrograms in bitmap format. The flowchart of the soft-
ware is shown in Figure 1. It may be divided into four
blocks: 1) pre-processing of the lung sounds digitally re-
corded, 2) the generation of a spectrogram, 3) digital
image processing of the generated spectrogram, and 4)
pattern recognition. All of these blocks are detailed below.

Pre-processing
Initially, the audio file containing the recording of a

specific lung sound is opened and read. Since the software
was developed with the purpose of testing the described
technique, the respiratory sounds were processed off-line
after being recorded. After the file reading procedure, the



676

Braz J Med Biol Res 42(7) 2009

R.J. Riella et al.

www.bjournal.com.br

samples of the digital recording from the respiratory sound
signal are stored in an array that will serve as data source
for analysis.

The main procedure for information extraction from
digitally recorded lung sounds in this study is the spectro-
gram generation and processing. The spectrogram is the
matrix obtained from the application of a short time Fourier
transform (STFT) (16,20) to a one-dimensional signal.
This processing technique generates images from sounds,
expressing graphically the sound frequency components
and the time location where these frequency components
occur. However, to ensure that the same spectrogram
characteristics will be obtained from different types of
recordings, a normalization process is required.

Digitally recorded lung sounds are discrete signals,
being processed in a discrete system. Therefore, some
properties of these signals must be normalized in order to
ensure that the results will not change with signals re-
corded in different settings. These properties are directly
related to the signal’s spectral information. As described in
the Nyquist theorem (21), the spectral information con-
tained in a sampled signal is limited to the frequency
bandwidth from 0 to the sample frequency’s half. Thus, the

fast Fourier transform (FFT) (20), which is the algorithm
used in the STFT spectral computation, will reflect this
frequency bandwidth. Its spectral resolution is defined by
the highest spectral component divided by the FFT width,
and a maximum frequency point equal to the maximum
frequency contained in this bandwidth. Therefore, digital
recordings with different sample rates generate FFTs with
different spectral resolution and, consequently, spectro-
grams with different figures. Thus, to ensure that the pro-
posed algorithm generates equal results for signals re-
corded with different sample rates, it is necessary to imple-
ment a sample rate normalization routine, which may be
considered to be the main algorithm of the pre-processing
procedure.

The original sample rate is initially detected to imple-
ment the sample rate normalization. If this sample rate is
higher than 9 kHz a down-sample algorithm is applied to
the signal in order to change this property to this normal-
ized value. This down-sample algorithm initially computes
a low-pass filter with a cut-off frequency of 4 kHz, accord-
ing to the original sampling frequency, and applies it to the
signal. This filter works as a second anti-aliasing filter, with
the objective of limiting the original signal’s frequency

Figure 1.Figure 1.Figure 1.Figure 1.Figure 1. Flowchart of the soft-
ware described here to imple-
ment the proposed methodology
for automatic wheezing recogni-
tion. FIR = finite impulse re-
sponse digital filter; IIR = infinite
impulse response digital filter.
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bandwidth and allows a reduction of sample frequency.
After the filtering process, the signal is down-sampled to 9
kHz. As all recordings used to validate this algorithm were
recorded with a sampling frequency higher than 9 kHz,
only a down-sample algorithm was implemented.

Since the purpose of the proposed method is the
recognition of wheezing in lung sounds extracted from any
source, another careful procedure must be followed to
eliminate other types of contaminating signals, which may
be seen in the spectrogram and may lead to misinterpreta-
tions. These signals, containing low-frequency compo-
nents, are located spectrally in a lower region when com-
pared to the wheeze spectra, and may be generated heart
sounds and other types of continuous adventitious sounds
such as rhonchus. In order to eliminate these signals, a
high-pass filter was built. For this specific application, a
Butterworth filter was designed.     The digital filters used in
the pre-processing procedure were a 100-tap finite im-
pulse response low-pass filter with 4 kHz of cut-off fre-
quency and an infinite impulse response high-pass third-
order Butterworth filter with 20 Hz of cut-off frequency.
Since at this point the sample frequency is already normal-
ized, the filter coefficients are set to the sample frequency
of 9 kHz.

Thus, after running the pre-processing procedure, the
spectrogram may be generated, and it is certain that any
type of lung sounds recorded with sample frequencies
equal to or higher than 9 kHz will generate the same

frequency range in the spectrogram.

Spectrogram generation
Spectrograms are the figures generated by the appli-

cation of the STFT theorem (20). The theorem states that
the spectrum variation of a non-stationary signal, which
may not be seen by a single Fourier analysis, may be
generated by segmenting this signal into slices, which are
considered stationary, and by computing the Fourier trans-
formation of these slices. In this way, the STFT may be
defined by Equation 1, where x(t) is the signal in the time
domain, w(t) defines the window function, and τ is the time
localization of the STFT.

                         (Equation 1)

In a discrete system, the STFT may be implemented by
segmenting the signal samples into groups and computing
the FFT of such groups. In the spectrogram computation,
we used 1024-point FFTs with a Hamming window and
60% overlap. The matrix resulting from the computation
generates a three-dimensional figure, representing time,
frequency and magnitude of the analyzed signal. This
figure is usually represented by a three-dimensional graph
that composes an image, where time is usually repre-
sented on the X-axis, and the Y-axis shows the frequency
and the magnitude, which are represented by a color or

Figure 2.Figure 2.Figure 2.Figure 2.Figure 2. Spectrogram obtained from a normal
vesicular respiratory cycle. The almost continu-
ous magnitude decay with increasing frequency
can be seen as continuous whitening in middle
and higher frequencies, shown by the vertical
arrowheads. The spectral region less than 100
Hz contains the majority of the frequency com-
ponents (horizontal arrowhead).
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grey scale. The resulting spectrogram image presents
different characteristics according to the kind of adventi-
tious sound contained in the respiratory cycle.

Normal lung sounds are basically formed by the sound of
the airflow in the airways, usually contaminated by heart
sounds. Thus, spectrograms of these sounds usually pres-
ent a continuous magnitude decay from lower to higher
frequencies and higher spectral components in the region
lower than 100 Hz, with these components being related to
the heart sounds. These characteristics are shown in Figure
2, which is a spectrogram of a normal vesicular sound.

The musical wheezing characteristics are determined
by the fundamental frequency and its harmonics, over
100 Hz, and with a duration longer than 100 ms as de-

Figure 3.Figure 3.Figure 3.Figure 3.Figure 3. Spectrogram resulting from a bron-
chial respiratory cycle with wheezing. The hori-
zontal lines in the middle-end (arrowheads) show
the appearance of strong frequency components
characterizing the presence of wheezes.

Figure 4.Figure 4.Figure 4.Figure 4.Figure 4. Spectrogram of a respiratory cycle
containing fine crackles. The vertical lines at
the top of the figure indicate the presence of
many impulsive signals, in the region between
the first two arrowheads. Subsequent arrow-
heads point to isolated crackles.

scribed by Leher (18).     Since these characteristics are
continuous, the resulting spectrogram presents horizontal
lines that define the strong presence of the wheeze main
frequency and its harmonics during a certain period of
time. This property may be seen in Figure 3 for a bronchial
respiratory cycle with wheezing.

In contrast, the discontinuous abnormalities, or crackles,
are characterized by short explosive sounds. Since these
sounds are of relatively high amplitude, condensed in a
short-time interval, they usually generate vertical lines in the
spectrogram figure referring to the spectrum contained in
this type of signal. This characteristic is shown in Figure 4,
which represents the spectrogram of a respiratory cycle
containing fine crackles during the inspiration phase.
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Figure 5.Figure 5.Figure 5.Figure 5.Figure 5. Spectrogram presented in Figure 2
after applying the Laplacian 9 x 9 mask. The
appliance of this mask increases the contrast of
horizontal lines, which is a characteristic to the
presence of wheezes. The arrowheads indicate
the wheezing signals, which have to be main-
tained intact.

Image treatment of the spectrogram
As may be seen in Figure 3, wheezing present in lung

sounds shows a characteristic profile in the spectrogram,
demonstrating great differences when compared to the
pattern of discontinuous abnormalities. Thus, to permit
automatic wheezing recognition, the proposed technique
applies some digital image processing techniques to iso-
late the wheezing characteristic figure in the spectrogram.
In order to isolate the main line, which defines the wheez-
ing fundamental frequency in the spectrogram, two-dimen-
sional convolution masks were initially applied. These
masks were implemented in order to increase the spectro-
gram’s contrast and enhance its edges. Therefore, the
application of this processing technique enhances the
presence of isolated lines in the graphic image, increasing
the visibility of the characteristic images of wheezes and
keeping their magnitude intact. Among all masks tried, the
one yielding the best result was the Laplacian 9 x 9 mask
(22). After the application of this two-dimensional filter, the
edges were enhanced and the noise was reduced. The
resulting spectrogram may be seen in Figure 5. Since the
characteristic images of the wheezes were kept intact after
the application of the convolution mask, it was possible to
eliminate the spectrogram’s low-magnitude components
in order to isolate only the high-amplitude information. To
accomplish this task, a half-threshold algorithm was devel-
oped. This procedure is called half-threshold because only
the values under a threshold are set to zero, with the
values over this threshold being kept intact.

Different sounds may be recorded with different pat-
terns. Therefore, the resulting signal may present a vari-

able recording level. In order to obtain the same limitation
for any record level, the limiting algorithm sweeps along
the spectrogram and localizes its highest values after the
application of the Laplacian mask, assigning a zero magni-
tude to all points that have values lower than the threshold,
which is computed as a percentage of the highest point.

The threshold was determined empirically and the best
result occurred at 80% of the peak value. Thus, every point
with magnitude lower than 80% of the highest value of the
spectrogram is considered to be zero when the threshold is
applied. An example of the effects of the threshold on the
spectrogram may be seen in Figures 6 and 7. Figure 6
presents the processed spectrogram of a normal vesicular
sound, whose non-processed spectrogram is shown in
Figure 2.

The processed spectrogram of normal breaths usually
shows only alternated pulses in the very low-frequency
range and sometimes some high-amplitude components
in higher spectral region, usually under 200 Hz. These
characteristics may be easily seen in Figure 6. In contrast,
the spectrogram of a respiratory cycle containing wheezes,
presented in Figure 7, shows only the solid horizontal line,
above 200 Hz, and some sparse low-frequency compo-
nents. This solid horizontal line is the characteristic figure
of wheezes, which was always prominent in the processed
spectrograms obtained during the tests.

Because of these characteristics, the processed spec-
trograms are presented as a user feedback, beyond the
automatic wheeze classification. Thus, the user can make
his own evaluation and draw his own conclusion regarding
the processed respiratory cycle, confirming or denying this
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automatic classification.
At this point, the presence of wheezing in an analyzed

respiratory cycle may be easily seen, although a reduction
of the amount of data is required in order to apply the
automatic pattern recognition module. Therefore, to per-
form this data reduction, the mean spectral projection is
computed from the processed spectrogram, and its result
is stored in an array. The graph obtained from this projec-
tion is illustrated in Figure 8, which corresponds to the

processed spectrogram in Figure 7. When this array pre-
sents high and isolated magnitudes, characterized as edges
over 100 Hz (3), it may be assumed that there is a high
isolated frequency component and that the signal presents
a high probability of the presence of wheezes. Thus, the
ten largest edges of the array are located and their fre-
quency and amplitude values are stored in order to be
used as data source for an artificial neural network-based
pattern recognition module.

Figure 6.Figure 6.Figure 6.Figure 6.Figure 6. Spectrogram of a normal vesicular
sound, presented in Figure 2, after applying the
Laplacian 9 x 9 mask and threshold. After this
processing, only a few spectral components re-
main in the figure, all of them located in the low
frequency region (arrowheads).

Figure 7.Figure 7.Figure 7.Figure 7.Figure 7. Spectrogram presented in Figure 3 af-
ter applying the Laplacian 9 x 9 mask and thresh-
old.     The arrowhead points to the horizontal line,
which represents the wheeze’s main frequency
that was maintained intact after processing.
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Pattern recognition
Since the lung sound patterns vary widely among dif-

ferent recording techniques and subjects, a pattern recog-
nition module based on an artificial neural network was
created to classify the analyzed input data as containing
wheezing or not.

The multilayer perceptron neural network contains 20
inputs. Each input corresponds to the frequency and am-
plitude of the 10 largest edges of the mean frequency from
the processed spectrogram, 41 neurons in the hidden
layer and 2 neurons in the output layer. The number of
neurons in the hidden layer was defined as 2n + 1, where
n represents the number of inputs (23) and the number of
neurons in the output layer corresponds to the number of
classification patterns.

The selected activation function for all neurons in the
artificial neural network was the hyperbolic tangent. This
function was chosen because of its sigmoid shape, having
a magnitude variation between -1 and 1. Another advan-
tage of this activation function is the fact that it may be
derivable, which is a requirement when using the back-
propagation algorithm. However, the use of this activation
function requires the observation of some properties. As
the valid region of this sigmoid is restricted between ap-
proximately -7 and 7, it is necessary to keep the weights
and the bias magnitudes lower enough, so that the induced
local field does not present a value outside this interval. To
avoid an under- and over-saturation of the activation func-
tion, a data normalization technique was applied to the
frequency and magnitude values used as data source for
the artificial neural network.....

Since the frequency values may vary from 0 to 4000

Hz, limited by the new anti-aliasing filter in the pre-process-
ing phase, all the frequency points were divided by 1000,
reducing the interval from zero to 4. The values of the
average amplitude of the pixel may range from zero to 255.
Thus, during the normalization process, the magnitude of
these points was divided by 100, reducing this variation
interval from 0 to 2.55.

Forty recorded respiratory cycles were used for the
training procedure, with 20 respiratory cycles containing
wheezes and 20 respiratory cycles containing normal lung
sounds and respiratory cycles with other types of continu-
ous and discontinuous anomalies.

The proposed method was validated using 28 different
recordings from different individuals ranging from newborn
babies to 76-year-old subjects. The recordings were avail-
able in the internet repositories (19,24,25). Generally, the
repositories do not indicate the recording standards. From
the disposable resources, only PixSoft (19) presents this
information. The recordings made by them (19) used con-
tact accelerometers and a sample frequency of 10 kHz.

Since the number of respiratory cycles in each record-
ing may vary from one to eleven, the total respiratory
cycles analyzed were 112, 40 of them with and 72 without
wheezes.

Results

When all respiratory sounds were evaluated separately,
without establishing a relation between the lung sound and
the volunteer, the algorithm presented the results shown in
Table 1. Positive values were computed when the technique
resulted in a positive value for respiratory cycles containing

Figure 8.Figure 8.Figure 8.Figure 8.Figure 8. Spectral projection
of the processed spectro-
gram. The arrowhead points
to the isolated high amplitude
value resulted from the pres-
ence of an isolated frequency,
which is the wheeze’s main
frequency.
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wheezes and negative values were computed when the
technique returned a negative value for respiratory cycles
without wheezes. In contrast, false-positive values were
computed when a positive value occurred for respiratory
cycles without wheezes and false-negative values were
computed when a negative value occurred for respiratory
cycles containing wheezes. The total accuracy was com-
puted by adding the positive and negative values.

The performance of the algorithm developed for the
analysis of isolated respiratory cycles was made in terms
of sensitivity (se), specificity (sp) and performance (per) as
defined by Equations 2 to 4. These analyses resulted in a
sensitivity value of 0.861, a specificity value of 0.825 and a
total performance of 84.28%.

                                                     (Equation 2)

                                                    (Equation 3)

                                           (Equation 4)

For each volunteer, the mean matching index for all
respiratory cycles was computed. When the number of
accurate determinations and errors was equal, the result
was computed as undefined. The     resulted performance of
the algorithm for this analysis was a total accuracy of 26
(92.86%), with an error of 1 (3.57%) and one result consid-
ered as undefined (3.57%).

Discussion

The main principle, which motivated the development
of the proposed methodology, is the characteristic figure
generated in the spectrogram from the respiratory cycles
containing wheezes. Since this type of adventitious sound
is composed basically of a fundamental frequency and its

harmonics, these frequencies appear as a horizontal line
in the spectrogram. Based on this characteristic, the pro-
posed methodology enhances the wheeze in a visual way,
applying image processing techniques to the spectrogram
and using them as a data source for an automatic pattern
recognition system.

In a qualitative analysis, all processed spectrograms of
respiratory cycles containing wheezes showed a charac-
teristic figure formed by a horizontal line, which may easily
determine the presence of wheezes in a visual analysis.

Concerning the automatic recognition module, the best
artificial neural network proved to be very robust, present-
ing dispersed errors in the analyzed set. This fact indicates
that it is not possible to assert, in the tested sound domain,
which type of specific sound may generate a higher num-
ber of recognition errors. This fact is confirmed by the fact
that only one example of normal bronchial sound pre-
sented error in the general diagnosis.

The computation time needed for the generation and
processing of the spectrogram is an important feature of
the viability of the proposed technique. In the proposed
application, the spectrogram generation, filtering and limit-
ing may require more than 5 s for a 2-s respiratory cycle.
The computing time is acceptable for off-line analysis, but
the algorithms must be optimized to allow real-time recog-
nition. However, as the purpose of the software was only to
test the effectiveness of the proposed methodology, pro-
cedures for time optimization were not implemented. There-
fore, it would be possible to reduce this processing time by
refining the computational procedures of the proposed
algorithms, which might allow real time analysis. Those
procedures are out of the scope of the present study, and
will be implemented later.

The developed algorithm was conceived to return not
only an automatic diagnosis, but also the processed spec-
trogram containing the wheezing figure, in order to allow the
user to draw his own conclusions about the results obtained.
According to the figures and the values obtained for the
automatic recognition system, the analysis allows the con-
clusion that the proposed technique is robust and trustwor-
thy for use as support for the detection of wheezing in lung
sounds, mainly when the analysis is performed through
several respiratory cycles recorded from the same patient.

The results presented here were the best score for 10
neural networks that had been trained. The distinction
among these neural networks was only the training group.
To achieve these results, the “without wheezing” group
had to present several elements from different normal and
abnormal lung sounds.

The values obtained from the artificial neural network
could not be compared to those presented by some investi-

Table 1.Table 1.Table 1.Table 1.Table 1. Results of isolated respiratory cycle analysis.

Absolute Percentage

Positive (p) 33 29.47%
Negative (n) 62 55.36%
False positive (fp) 10 8.92%
False negative (fn) 7 6.25%
Total 112 100.00%
Total accuracy 95 84.82%
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gators who had proposed to develop systems for lung sound
recognition due to different points of view adopted in the
evaluation of the results obtained. Oud and Doijes (17),
based on the analysis of respiratory sounds, classified their
patients as healthy or asthmatic. The results reported by
Kandaswamy et al. (13) were closer to those reported here.
In their investigation, the respiratory cycles were divided into
six groups: normal, wheeze, crackle, squawk, stridor, and
rhonchus. The results presented in their paper, obtained
from an artificial neural network chosen from a set of six
artificial neural networks trained, were 94.02% accuracy for
group validation and 91.67% mean efficiency for recogni-
tion. Therefore, despite the fact that the present study re-
sulted in a high recognition index, the results presented in
Ref. 13 have a larger number of classification categories.

The results computed here did not show differences
regarding patient age, body transducer position or recording
method. However, errors may occur when the recorded
sounds contain specific frequency noise. Also, errors may
occur when the signal is filtered before the recording and the
filtering process favors frequencies higher than 200 Hz.

The proposed technique was developed with the pur-
pose of creating not only a recognition system, but also an
effective algorithm that could support physicians in the

diagnosis of lung diseases. The algorithm returns not only
an indication of the diagnosis but also processed data to
the user. Thus, the user may reach conclusions by analyz-
ing these data by himself. For this application, the treated
spectrogram is displayed on the computer screen before
the automatic recognition.

The results obtained during the tests indicate that this
technique may be useful in clinical diagnosis, mainly when
the analysis can be performed continually using many
respiratory cycles from the same patient. However, the
algorithm still needs to automatically detect the respiratory
cycle limits, finding its beginning and end.

Finally, the novel technique presented here is a first
step in the creation of an automatic lung sound analyzer
that may be quite useful to increase the accuracy and
speed of clinical diagnosis.
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